
CHAPTER 1. LINES AND PLANES IN SPACE

§1. Angles and distances between skew lines

1.1. Given cube ABCDA1B1C1D1 with side a. Find the angle and the distance
between lines A1B and AC1.

1.2. Given cube with side 1. Find the angle and the distance between skew
diagonals of two of its neighbouring faces.

1.3. Let K, L and M be the midpoints of edges AD, A1B1 and CC1 of the cube
ABCDA1B1C1D1. Prove that triangle KLM is an equilateral one and its center
coincides with the center of the cube.

1.4. Given cube ABCDA1B1C1D1 with side 1, let K be the midpoint of edge
DD1. Find the angle and the distance between lines CK and A1D.

1.5. Edge CD of tetrahedron ABCD is perpendicular to plane ABC; M is the
midpoint of DB, N is the midpoint of AB and point K divides edge CD in relation
CK : KD = 1 : 2. Prove that line CN is equidistant from lines AM and BK.

1.6. Find the distance between two skew medians of the faces of a regular
tetrahedron with edge 1. (Investigate all the possible positions of medians.)

§2. Angles between lines and planes

1.7. A plane is given by equation

ax + by + cz + d = 0.

Prove that vector (a, b, c) is perpendicular to this plane.
1.8. Find the cosine of the angle between vectors with coordinates (a1, b1, c1)

and (a2, b2, c2).
1.9. In rectangular parallelepiped ABCDA1B1C1D1 the lengths of edges are

known: AB = a, AD = b, AA1 = c.
a) Find the angle between planes BB1D and ABC1.
b) Find the angle between planes AB1D1 and A1C1D.
c) Find the angle between line BD1 and plane A1BD.
1.10. The base of a regular triangular prism is triangle ABC with side a. On

the lateral edges points A1, B1 and C1 are taken so that the distances from them
to the plane of the base are equal to 1

2a, a and 3
2a, respectively. Find the angle

between planes ABC and A1B1C1.
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§3. Lines forming equal angles with lines and with planes

1.11. Line l constitutes equal angles with two intersecting lines l1 and l2 and is
not perpendicular to plane Π that contains these lines. Prove that the projection
of l to plane Π also constitutes equal angles with lines l1 and l2.

1.12. Prove that line l forms equal angles with two intersecting lines if and only
if it is perpendicular to one of the two bisectors of the angles between these lines.

1.13. Given two skew lines l1 and l2; points O1 and A1 are taken on l1; points O2

and A2 are taken on l2 so that O1O2 is the common perpendicular to lines l1 and l2
and line A1A2 forms equal angles with linels l1 and l2. Prove that O1A1 = O2A2.

1.14. Points A1 and A2 belong to planes Π1 and Π2, respectively, and line l is
the intersection line of Π1 and Π2. Prove that line A1A2 forms equal angles with
planes Π1 and Π2 if and only if points A1 and A2 are equidistant from line l.

1.15. Prove that the line forming pairwise equal angles with three pairwise
intersecting lines that lie in plane Π is perpendicular to Π.

1.16. Given three lines non-parallel to one plane prove that there exists a line
forming equal angles with them; moreover, through any point one can draw exactly
four such lines.

§4. Skew lines

1.17. Given two skew lines prove that there exists a unique segment perpendic-
ular to them and with the endpoints on these lines.

1.18. In space, there are given two skew lines l1 and l2 and point O not on any
of them. Does there always exist a line passing through O and intersecting both
given lines? Can there be two such lines?

1.19. In space, there are given three pairwise skew lines. Prove that there exists
a unique parallelepiped three edges of which lie on these lines.

1.20. On the common perpendicular to skew lines p and q, a point, A, is taken.
Along line p point M is moving and N is the projection of M to q. Prove that all
the planes AMN have a common line.

§5. Pythagoras’s theorem in space

1.21. Line l constitutes angles α, β and γ with three pairwise perpendicular
lines. Prove that

cos2 α + cos2 β + cos2 γ = 1.

1.22. Plane angles at the vertex D of tetrahedron ABCD are right ones. Prove
that the sum of squares of areas of the three rectangular faces of the tetrahedron
is equal to the square of the area of face ABC.

1.23. Inside a ball of radius R, consider point A at distance a from the center
of the ball. Through A three pairwise perpendicular chords are drawn.

a) Find the sum of squares of lengths of these chords.
b) Find the sum of squares of lengths of segments of chords into which point A

divides them.
1.24. Prove that the sum of squared lengths of the projections of the cube’s

edges to any plane is equal to 8a2, where a is the length of the cube’s edge.
1.25. Consider a regular tetrahedron. Prove that the sum of squared lengths of

the projections of the tetrahedron’s edges to any plane is equal to 4a2, where a is
the length of an edge of the tetrahedron.
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1.26. Given a regular tetrahedron with edge a. Prove that the sum of squared
lengths of the projections (to any plane) of segments connecting the center of the
tetrahedron with its vertices is equal to a2.

§6. The coordinate method

1.27. Prove that the distance from the point with coordinates (x0, y0, z0) to the
plane given by equation ax + by + cz + d = 0 is equal to

|ax0 + by0 + cz0 + d|√
a2 + b2 + c2

.

1.28. Given two points A and B and a positive number k 6= 1 find the locus of
points M such that AM : BM = k.

1.29. Find the locus of points X such that

pAX2 + qBX2 + rCX2 = d,

where A, B and C are given points, p, q, r and d are given numbers such that
p + q + r = 0.

1.30. Given two cones with equal angles between the axis and the generator.
Let their axes be parallel. Prove that all the intersection points of the surfaces of
these cones lie in one plane.

1.31. Given cube ABCDA1B1C1D1 with edge a, prove that the distance from
any point in space to one of the lines AA1, B1C1, CD is not shorter than a√

2
.

1.32. On three mutually perpendicular lines that intersect at point O, points A,
B and C equidistant from O are fixed. Let l be an arbitrary line passing through
O. Let points A1, B1 and C1 be symmetric through l to A, B and C, respectively.
The planes passing through points A1, B1 and C1 perpendicularly to lines OA, OB
and OC, respectively, intersect at point M . Find the locus of points M .

Problems for independent study

1.33. Parallel lines l1 and l2 lie in two planes that intersect along line l. Prove
that l1 ‖ l.

1.34. Given three pairwise skew lines. Prove that there exist infinitely many
lines each of which intersects all the three of these lines.

1.35. Triangles ABC and A1B1C1 do not lie in one plane and lines AB and
A1B1, AC and A1C1, BC and B1C1 are pairwise skew.

a) Prove that the intersection points of the indicated lines lie on one line.
b) Prove that lines AA1, BB1 and CC1 either intersect at one point or are

parallel.
1.36. Given several lines in space so that any two of them intersect. Prove that

either all of them lie in one plane or all of them pass through one point.
1.37. In rectangular parallelepiped ABCDA1B1C1D1 diagonal AC1 is perpen-

dicular to plane A1BD. Prove that this paral1lelepiped is a cube.
1.38. For which dispositions of a dihedral angle and a plane that intersects it

we get as a section an angle that is intersected along its bisector by the bisector
plane of the dihedral angle?

1.39. Prove that the sum of angles that a line constitutes with two perpendicular
planes does not exceed 90◦.
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1.40. In a regular quadrangular pyramid the angle between a lateral edge and
the plane of its base is equal to the angle between a lateral edge and the plane of
a lateral face that does not contain this edge. Find this angle.

1.41. Through edge AA1 of cube ABCDA1B1C1D1 a plane that forms equal
angles with lines BC and B1D is drawn. Find these angles.

Solutions

1.1. It is easy to verify that triangle A1BD is an equilateral one. Moreover,
point A is equidistant from its vertices. Therefore, its projection is the center of
the triangle. Similarly, The projection maps point C1 into the center of triangle
A1BD. Therefore, lines A1B and AC1 are perpendicular and the distance between
them is equal to the distance from the center of triangle A1BD to its side. Since
all the sides of this triangle are equal to a

√
2, the distance in question is equal to

a√
6
.
1.2. Let us consider diagonals AB1 and BD of cube ABCDA1B1C1D1. Since

B1D1 ‖ BD, the angle between diagonals AB1 and BD is equal to ∠AB1D1. But
triangle AB1D1 is an equilateral one and, therefore, ∠AB1D1 = 60◦.

It is easy to verify that line BD is perpendicular to plane ACA1C1; therefore, the
projection to the plane maps BD into the midpoint M of segment AC. Similarly,
point B1 is mapped under this projection into the midpoint N of segment A1C1.
Therefore, the distance between lines AB1 and BD is equal to the distance from
point M to line AN .

If the legs of a right triangle are equal to a and b and its hypothenuse is equal to
c, then the distance from the vertex of the right angle to the hypothenuse is equal
to ab

c . In right triangle AMN legs are equal to 1 and 1√
2
; therefore, its hypothenuse

is equal to
√

3
2 and the distance in question is equal to 1√

3
.

1.3. Let O be the center of the cube. Then 2{OK} = {C1D}, 2{OL} = {DA1}
and 2{OM} = {A1C1}. Since triangle C1DA1 is an equilateral one, triangle KLM
is also an equilateral one and O is its center.

1.4. First, let us calculate the value of the angle. Let M be the midpoint of
edge BB1. Then A1M ‖ KC and, therefore, the angle between lines CK and A1D
is equal to angle MA1D. This angle can be computed with the help of the law of
cosines, because A1D =

√
2, A1M =

√
5

2 and DM = 3
2 . After simple calculations

we get cos MA1D = 1√
10

.
To compute the distance between lines CK and A1D, let us take their projections

to the plane passing through edges AB and C1D1. This projection sends line A1D
into the midpoint O of segment AD1 and points C and K into the midpoint Q of
segment BC1 and the midpoint P of segment OD1, respectively.

The distance between lines CK and A1D is equal to the distance from point
O to line PQ. Legs OP and OQ of right triangle OPQ are equal to 1√

8
and

1, respectively. Therefore, the hypothenuse of this triangle is equal to 3√
8
. The

required distance is equal to the product of the legs’ lengths divided by the length
of the hypothenuse, i.e., it is equal to 1

3 .
1.5. Consider the projection to the plane perpendicular to line CN . Denote by

X1 the projection of any point X. The distance from line CN to line AM (resp.
BK) is equal to the distance from point C1 to line A1M1 (resp. B1K1). Clearly,
triangle A1D1B1 is an equilateral one, K1 is the intersection point of its medians,
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C1 is the midpoint of A1B1 and M1 is the midpoint of B1D1. Therefore, lines
A1M1 and B1K1 contain medians of an isosceles triangle and, therefore, point C1

is equidistant from them.
1.6. Let ABCD be a given regular tetrahedron, K the midpoint of AB, M the

midpoint of AC. Consider projection to the plane perpendicular to face ABC and
passing through edge AB. Let D1 be the projection of D, M1 the projection of
M , i.e., the midpoint of segment AK. The distance between lines CK and DM is
equal to the distance from point K to line D1M1.

In right triangle D1M1K, leg KM1 is equal to 1
4 and leg D1M1 is equal to the

height of tetrahedron ABCD, i.e., it is equal to
√

2
3 . Therefore, the hypothenuse

is equal to
√

35
48 and, finally, the distance to be found is equal to

√
2
35 .

If N is the midpoint of edge CD, then to find the distance between medians CK
and BN we can consider the projection to the same plane as in the preceding case.
Let N1 be the projection of point N , i.e., the midpoint of segment D1K. In right

triangle BN1K, leg KB is equal to 1
2 and leg KN1 is equal to

√
1
6 . Therefore, the

length of the hypothenuse is equal to
√

5
12 and the required distance is equal to√

1
10 .
1.7. Let (x1, y1, z1) and (x2, y2, z2) be points of the given plane. Then

ax1 + by1 + cz1 − (ax2 + by2 + cz2) = 0

and, therefore, (x1−x2, y1−y2, z1−z2) perp(a, b, c). Consequently, any line passing
through two points of the given plane is perpendicular to vector (a, b, c).

1.8. Since (u,v) = |u| · |v| cos ϕ, where ϕ is the angle between vectors u and v,
the cosine to be found is equal to

a1a2 + b1b2 + c1c2√
a2
1 + b2

1 + c2
1

√
a2
2 + b2

2 + c2
2

.

1.9. a) First solution. Take point A as the origin and direct axes Ox, Oy and
Oz along rays AB, AD and AA1, respectively. Then the vector with coordinates
(b, a, 0) is perpendicular to plane BB1D and vector (0, c,−b) is perpendicular to
plane ABC1. Therefore, the cosine of the angle between given planes is equal to

ac√
a2 + b2 · √b2 + c2

.

Second solution. If the area of parallelogram ABC1D1 is equal to S and the
area of its projection to plane BB1D is equal to s, then the cosine of the angle
between the considered planes is equal to s

S (see Problem 2.13). Let M and N be
the projections of points A and C1 to plane BB1D. Parallelogram MBND1 is the
projection of parallelogram ABC1D1 to this plane. Since MB = a2√

a2+b2
, it follows

that s = a2c√
a2+b2

. It remains to observe that S = a
√

b2 + c2.
b) Let us introduce the coordinate system as in the first solution of heading a).

If the plane is given by equation

px + qy + rz = s,
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then vector (p, q, r) is perpendicular to it. Plane AB1D1 contains points A, B1 and
D1 with coordinates (0, 0, 0), (a, 0, c) and (0, b, c), respectively. These conditions
make it possible to find its equation:

bcx + acy − abz = 0;

hence, vector (bc, ac,−ab) is perpendicular to the plane. Taking into account that
points with coordinates (0, 0, c), (a, b, c) and (0, b, 0) belong to plane A1C1D, we find
its equation and deduce that vector (bc,−ac,−ab) is perpendicular to it. Therefore,
the cosine of the angle between the given planes is equal to the cosine of the angle
between these two vectors, i.e., it is equal to

a2b2 + b2c2 − a2c2

a2b2 + b2c2 + a2c2
.

c) Let us introduce the coordinate system as in the first solution of heading a).
Then plane A1BD is given by equation

x

a
+

y

b
+

z

c
= 1

and, therefore, vector abc( 1
a , 1

b , 1
c ) = (bc, ca, ab) is perpendicular to this plane. The

coordinates of vector {BD1} are (−a, b, c). Therefore, the sine of the angle between
line BD1 and plane A1BD is equal to the cosine of the angle between vectors
(−a, b, c) and (bc, ca, ab), i.e., it is equal to

abc√
a2b2c2 · √a2b2 + b2c2 + c2a2

.

1.10. Let O be the intersection point of lines AB and A1B1, M the intersection
point of lines AC and A1C1. First, let us prove that MO ⊥ OA. To this end on
segments BB1 and CC1 take points B2 and C2, respectively, so that BB2 = CC2 =
AA1. Clearly, MA : AA1 = AC : C1C2 = 1 and OA : AA1 = AB : B1B2 = 2.
Hence, MA : OA = 1 : 2. Moreover, ∠MAO = 60◦ and, therefore, ∠OMA = 90◦.
It follows that plane AMA1 is perpendicular to line MO along which planes ABC
and A1B1C1 intersect. Therefore, the angle between these planes is equal to angle
AMA1 which is equal 45◦.

1.11. It suffices to carry out the proof for the case when line l passes through the
intersection point O of lines l1 and l2. Let A be a point on line l distinct from O; P
the projection of point A to plane Π; B1 and B2 bases of perpendiculars dropped
from point A to lines l1 and l2, respectively. Since ∠AOB1 = ∠AOB2, the right
triangles AOB1 and AOB2 are equal and, therefore, OB1 = OB2. By the theorem
on three perpendiculars PB1 ⊥ OB1 and PB2 ⊥ OB2. Right triangles POB1 and
POB2 have a common hypothenuse and equal legs OB1 and OB2; hence, they are
equal and, therefore, ∠POB1 = ∠POB2.

1.12. Let Π be the plane containing the given lines. The case when l ⊥ Π is
obvious. If line l is not perpendicular to plane Π, then l constitutes equal angles
with the given lines if and only if its projection to Π is the bisector of one of the
angles between them (see Problem 1.11); this means that l is perpendicular to
another bisector.
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1.13.Through point O2, draw line l′1 parallel to l1. Let Π be the plane containing
lines l2 and l′1; A′1 the projection of point A1 to plane Π. As follows from Problem
1.11, line A′1A2 constitutes equal angles with lines l′1 and l2 and, therefore, triangle
A′1O2A2 is an equilateral one, hence, O2A2 = O2A

′
1 = O1A1.

It is easy to verify that the opposite is also true: if O1A1 = O2A2, then line
A1A2 forms equal angles with lines l1 and l2.

1.14. Consider the projection to plane Π which is perpendicular to line l. This
projection sends points A1 and A2 into A′1 and A′2, line l into point L and planes Π1

and Π1 into lines p1 and p2, respectively. As follows from the solution of Problem
1.11, line A1A2 forms equal angles with perpendiculars to planes Π1 and Π2 if and
only if line A′1A

′
2 forms equal angles with perpendiculars to lines p1 and p2, i.e.,

it forms equal angles with lines p1 and p2 themselves; this, in turn, means that
A′1L = A′2L.

1.15. If the line is not perpendicular to plane Π and forms equal angles with
two intersecting lines in this plane, then (by Problem 1.12) its projection to plane
Π is parallel to the bisector of one of the two angles formed by these lines. We
may assume that all the three lines meet at one point. If line l is the bisector of
the angle between lines l1 and l2, then l1 and l2 are symmetric through l; hence, l
cannot be the bisector of the angle between lines l1 and l3.

1.16. We may assume that the given lines pass through one point. Let a1 and
a2 be the bisectors of the angles between the first and the second line, b1 and b2 the
bisectors between the second and the third lines. A line forms equal angles with the
three given lines if and only if it is perpendicular to lines ai and bj (Problem 1.12),
i.e., is perpendicular to the plane containing lines ai and bj . There are exactly 4
distinct pairs (ai, bj). All the planes determined by these pairs of lines are distinct,
because line ai cannot lie in the plane containing b1 and b2.

1.17. First solution. Let line l be perpendicular to given lines l1 and l2.
Through line l1 draw the plane parallel to l. The intersection point of this plane
with line l2 is one of the endpoints of the desired segment.

Second solution. Consider the projection of given lines to the plane parallel to
them. The endpoints of the required segment are points whose projections is the
intersection point of the projections of given lines.

1.18. Let line l pass through point O and intersect lines l1 and l2. Consider
planes Π1 and Π2 containing point O and lines l1 and l2, respectively. Line l
belongs to both planes, Π1 and Π2. Planes Π1 and Π2 are not parallel since they
have a common point, O; it is also clear that they do not coincide. Therefore, the
intersection of planes Π1 and Π2 is a line. If this line is not parallel to either line
l1 or line l2, then it is the desired line; otherwise, the desired line does not exist.

1.19. To get the desired parallelepiped we have to draw through each of the
given lines two planes: a plane parallel to one of the remaining lines and a plane
parallel to the other of the remaining lines.

1.20. Let PQ be the common perpendicular to lines p and q, let points P and
Q belong to lines p and q, respectively. Through points P and Q draw lines q′ and
p′ parallel to lines q and p. Let M ′ and N ′ be the projections of points M and N
to lines p′ and q′; let M1, N1 and X be the respective intersection points of planes
passing through point A parallel lines p and q with sides MM ′ and NN ′ of the
parallelogram MM ′NN ′ and with its diagonal MN (Fig. 16).

By the theorem on three perpendiculars M ′N ⊥ q; hence, ∠M1N1A = 90◦. It is
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Figure 16 (Sol. 1.20)

also clear that
M1X : N1X = MX : NX = PA : QA;

therefore, point X belongs to a fixed line.
1.21. Let us introduce a coordinate system directing its axes parallel to the

three given perpendicular lines. On line l take a unit vector v. The coordinates of
v are (x, y, z), where x = ± cos α, y = ± cosβ, z = ± cos γ. Therefore,

cos2 α + cos2 β + cos2 γ = x2 + y2 + z2 = |v|2 = 1.

1.22. First solution. Let α, β and γ be angles between plane ABC and planes
DBC, DAC and DAB, respectively. If the area of face ABC is equal to S, then
the areas of faces DBC, DAC and DAB are equal to S cos α, S cosβ and S cos γ,
respectively (see Problem 2.13). It remains to verify that

cos2 α + cos2 β + cos2 γ = 1.

Since the angles α, β and γ are equal to angles between the line perpendicular to
face ABC and lines DA, DB and DC, respectively, it follows that we can make
use of the result of Problem 1.21.

Second solution. Let α be the angle between planes ABC and DBC; D′ the
projection of point D to plane ABC. Then SDBC = cos αSABC and SD′BC =
cos αSDBC (see Problem 2.13) and, therefore, cos α = SDBC

SABC
, SD′BC = S2

DBC

SABC
(Sim-

ilar equalities can be also obtained for triangles D′AB and D′AC). Taking the
sum of the equations and taking into account that the sum of areas of triangles
D′BC, D′AC and D′AB is equal to the area of triangle ABC we get the desired
statement.

1.23. Let us consider the right parallelepiped whose edges are parallel to the
given chords and points A and the center, O, of the ball are its opposite vertices.
Let a1, a2 and a3 be the lengths of its edges; clearly, a2

1 + a2
2 + a2

3 = a2.
a) If the distance from the center of the ball to the chord is equal to x, then the

square of the chord’s length is equal to 4R2 − 4x2. Since the distances from the



SOLUTIONS 9

given chords to point O are equal to the lengths of the diagonals of parallelepiped’s
faces, the desired sum of squares is equal to

12R2 − 4(a2
2 + a2

3)− 4(a2
1 + a2

2)− 4(a2
1 + a2

2) = 12R2 − 8a2.

b) If the length of the chord is equal to d and the distance between point A and
the center of the chord is equal to y, the sum of the squared lengths of the chord’s
segments into which point A divides it is equal to 2y2 + d2

2 . Since the distances
from point A to the midpoints of the given chords are equal to a1, a2 and a3 and
the sum of the squares of the lengths of chords is equal to 12R2 − 8a2, it follows
that the desired sum of the squares is equal to

2a2 + (6R2 − 4a2) = 6R2 − 2a2.

1.24. Let α, β and γ be the angles between edges of the cube and a line
perpendicular to the given plane. Then the lengths of the projections of the cube’s
edges to this plane take values a sin α, a sinβ and a sin γ and each value is taken
exactly 4 times. Since cos2 α + cos2 β + cos2 γ = 1 (Problem 1.21), it follows that

sin2 α + sin2 β + sin2 γ = 2.

Therefore, the desired sum of squares is equal to 8a2.
1.25. Through each edge of the tetrahedron draw the plane parallel to the

opposite edge. As a result we get a cube into which the given tetrahedron is
inscribed; the length of the cube’s edge is equal to a√

2
. The projection of each of

the face of the cube is a parallelogram whose diagonals are equal to the projections
of the tetrahedron’s edges. The sum of squared lengths of the parallelogram’s
diagonals is equal to the sum of squared lengths of all its edges. Therefore, the sum
of squared lengths of two opposite edges of the tetrahedron is equal to the sum of
squared lengths of the projections of two pairs of the cube’s opposite edges.

Therefore, the sum of squared lengths of the projections of the tetrahedron’s
edges is equal to the sum of squared lengths of the projections of the cube’s edges,
i.e., it is equal to 4a2.

1.26. As in the preceding problem, let us assume that the vertices of tetrahedron
AB1CD1 sit in vertices of cube ABCDA1B1C1D1; the length of this cube’s edge
is equal to a√

2
. Let O be the center of the tetrahedron. The lengths of segments

OA and OD1 are halves of those of the diagonals of parallelogram ABC1D1 and,
therefore, the sum of squared lengths of their projections is equal to one fourth of
the sum of squared lengths of the projections of this parallelogram’s sides.

Similarly, the sum of squared lengths of the projections of segments OC and
OB1 is equal to one fourth of the sum of squared lengths of the projections of the
sides of parallelogram A1B1CD.

Further, notice that the sum of the squared lengths of the projections of the
diagonals of parallelograms AA1D1D and BB1C1C is equal to the sum of squared
lengths of the projections of their edges. As a result we see that the desired sum
of squared lengths is equal to one fourth of the sum of squared lengths of the
projections of the cube’s edges, i.e., it is equal to a2.

1.27. Let (x1, y1, z1) be the coordinates of the base of the perpendicular dropped
from the given point to the given plane. Since vector (a, b, c) is perpendicular to
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the given plane (Problem 1.7), it follows that x1 = x0 + λa, y1 = y0 + λb and
z1 = z0 + λc, where the distance to be found is equal to |λ|√a2 + b2 + c2. Point
(x1, y1, z1) lies in the given plane and, therefore,

a(x0 + λa) + (b(y0 + λb) + c(z0 + λc) + d = 0,

i.e., λ = −ax0+by0+cz0+d
a2+b2+c2 .

1.28. Let us introduce the coordinate system so that the coordinates of points
A and B are (−a, 0, 0) and (a, 0, 0), respectively. If the coordinates of point M are
(x, y, z), then

AM2

BM2
=

(x + a)2 + y2 + z2

(x− a)2 + y2 + z2
.

The equation AM : BM = k reduces to the form

(
x +

1 + k2

1− k2
a

)2

+ y2 + z2 =
(

2ka

1− k2

)2

.

This equation is an equation of the sphere with center
(
− 1+k2

1−k2 a, 0, 0
)

and radius∣∣∣ 2ka
1−k2

∣∣∣.
1.29. Let us introduce the coordinate system directing the Oz-axis perpendic-

ularly to plane ABC. Let the coordinates of point X be (x, y, z). Then AX2 =
(x − a1)2 + (y − a2)2 + z2. Therefore, for the coordinates of point X we get an
equation of the form

(p + q + r)(x2 + y2 + z2) + αx + βy + δ = 0,

i.e., αx + βy + δ = 0. This equation determines a plane perpendicular to plane
ABC. (In particular cases this equation determines the empty set or the whole
space.)

1.30. Let the axis of the cone be parallel to the Oz-axis; let the coordinates of
the vertex be (a, b, c); α the angle between the axis of the cone and the generator.
Then the points from the surface of the cone satisfy the equation

(x− a)2 + (y − b)2 = k2(z − c)2,

where k = tan α. The difference of two equations of conic sections with the same
angle α is a linear equation; all generic points of conic sections lie in the plane given
by this linear equation.

1.31. Let us introduce a coordinate system directing the axes Ox, Oy and Oz
along rays AB, AD and AA1, respectively. Line AA1 is given by equations x = 0,
y = 0; line CD by equations y = a, z = 0; line B1C1 by equations x = a, z = a.

Therefore, the squared distances from the point with coordinates (x, y, z) to lines
AA1, CD and B1C1 are equal to x2 + y2, (y − a)2 + z2 and (x − a)2 + (z − a)2,
respectively. All these numbers cannot be simultaneously smaller than 1

2a2 because

x2 + (x− a)2 ≥ a2

2
, y2 + (y − a)2 ≥ a2

2
and z2 + (z − a)2 ≥ 1

2
a2.
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All these numbers are equal to 1
2a2 for the point with coordinates

(
1
2a, 1

2a, 1
2a

)
, i.e.,

for the center of the cube.
1.32. Let us direct the coordinate axes Ox, Oy and Oz along rays OA, OB and

OC, respectively. Let the angles formed by line l with these axes be equal to α,
β and γ, respectively. The coordinates of point M are equal to the coordinates of
the projections of points A1, B1 and C1 to axes Ox, Oy and Oz, respectively, i.e.,
they are equal to a cos 2α, a cos 2β and a cos 2γ, where a = |OA|. Since

cos 2α + cos 2β + cos 2γ = 2(cos2 α + cos2 β + cos2 γ)− 3 = −1

(see Problem 1.21) and −1 ≤ cos 2α, cos 2β, cos 2γ ≤ 1, it follows that the locus to
be found consists of the intersection points of the cube determined by conditions
|x|, |y|, |z| ≤ a with the plane x+y+z = −a; this plane passes through the vertices
with coordinates (a,−a,−a), (−a, a,−a) and (−a,−a, a).
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CHAPTER 2. PROJECTIONS, SECTIONS, UNFOLDINGS

§1. Auxiliary projections

2.1. Given parallelepiped ABCDA1B1C1D1 and the intersection point M of
diagonal AC1 with plane A1BD. Prove that AM = 1

3AC1.
2.2. a) In cube ABCDA1B1C1D1 the common perpendicular MN to lines A1B

and B1C is drawn so that point M lies on line A1B. Find the ratio A1M : MB.
b) Given cube ABCDA1B1C1D1 and points M and N on segments AA1 and

BC1 such that lines MN and B1D intersect. Find the difference between ratios
BC1 : BN and AM : AA1.

2.3. The angles between a plane and the sides of an equilateral triangle are
equal to α, β and γ. Prove that the sine of one of these angles is equal to the sum
of sines of the other two angles.

2.4. At the base of the pyramid lies a polygon with an odd number of sides.
Is it possible to place arrows on the edges of the pyramid so that the sum of the
obtained vectors is equal to zero?

2.5. A plane passing through the midpoints of edges AB and CD of tetrahedron
ABCD intersects edges AD and BC at points L and N . Prove that BC : CN =
AD : DL.

2.6. Given points A, A1, B, B1, C, C1 in space not in one plane and such that
vectors {AA1}, {BB1} and {CC1} have the same direction. Planes ABC1, AB1C
and A1BC intersect at point P and planes A1B1C, A1BC1 and AB1C1 intersect
at point P1. Prove that PP1 ‖ AA1.

2.7. Given plane Π and points A and B outside it find the locus of points X in
plane Π for which lines AX and BX form equal angles with plane Π.

2.8. Prove that the sum of the lengths of edges of a convex polyhedron is greater
than 3d, where d is the greatest distance between the vertices of the polyhedron.

§2. The theorem on three perpendiculars

2.9. Line l is not perpendicular to plane Π, let l′ be its projection to plane Π.
Let l1 be a line in plane Π. Prove that l ⊥ l1 if and only if l′ ⊥ l1. (Theorem on
three perpendiculars.)

2.10. a) Prove that the opposite edges of a regular tetrahedron are perpendicular
to each other.

b) The base of a regular pyramid with vertex S is polygon A1 . . . A2n−1. Prove
that edges SA1 and AnAn+1 are perpendicular to each other.

2.11. Prove that the opposite edges of a tetrahedron are pairwise perpendicular
if and only if one of the heights of the tetrahedron passes through the intersection
point of the heights of a face (in this case the other heights of the tetrahedron pass
through the intersection points of the heights of the faces).

2.12. Edge AD of tetrahedron ABCD is perpendicular to face ABC. Prove
that the projection to plane BCD maps the orthocenter of triangle ABC into the
orthocenter of triangle BCD.

Typeset by AMS-TEX
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§3. The area of the projection of a polygon

2.13. The area of a polygon is equal to S. Prove that the area of its projection
to plane Π is equal to S cos ϕ, where ϕ is the angle between plane Π and the plane
of the polygon.

2.14. Compute the cosine of the dihedral angle at the edge of a regular tetra-
hedron.

2.15. The dihedral angle at the base of a regular n-gonal pyramid is equal to α.
Find the dihedral angle between its neighbouring lateral faces.

2.16. In a regular truncated quadrilateral pyramid, a section is drawn through
the diagonals of the base and another section passing through the side of the lower
base. The angle between the sections is equal to α. Find the ratio of the areas of
the sections.

2.17. The dihedral angles at the edges of the base of a triangular pyramid are
equal to α, β and γ; the areas of the corresponding lateral faces are equal to Sa,
Sb and Sc. Prove that the area of the base is equal to

Sa cosα + Sb cos β + Sc cos γ.

§4. Problems on projections

2.18. The projections of a spatial figure to two intersecting planes are straight
lines. Is this figure necessarily a straight line itself?

2.19. The projections of a body to two planes are disks. Prove that the radii of
these disks are equal.

2.20. Prove that the area of the projection of a cube with edge 1 to a plane is
equal to the length of its projection to a line perpendicular to this plane.

2.21. Given triangle ABC, prove that there exists an orthogonal projection
of an equilateral triangle to a plane so that its projection is similar to the given
triangle ABC.

2.22. The projections of two convex bodies to three coordionate planes coincide.
Must these bodies have a common point?

§5. Sections

2.23. Given two parallel planes and two spheres in space so that the first sphere
is tangent to the first plane at point A and the second sphere is tangent to the
second plane at point B and both spheres are tangent to each other at point C.
Prove that points A, B and C lie on one line.

2.24. A truncated cone whose bases are great circles of two balls is circumscribed
around another ball (cf. Problem 4.18). Determine the total area of the cone’s
surface if the sum of surfaces of the three balls is equal to S.

2.25. Two opposite edges of a tetrahedron are perpendicular and their lengths
are equal to a and b; the distance between them is equal to c. A cube four edges of
which are perpendicular to these two edges of the tetrahedron is inscribed in the
tetrahedron and on every face of the tetrahedron exactly two vertices of the cube
lie. Find the length of the cube’s edge.

2.26. What regular polygons can be obtained when a plane intersects a cube?
2.27. All sections of a body by planes are disks. Prove that this body is a ball.
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2.28. Through vertex A of a right circular cone a section of maximal area is
drawn. The area of this section is twice that of the section passing through the axis
of the cone. Find the angle at the vertex of the axial section of the cone.

2.29. A plane divides the medians of faces ABC, ACD and ADB of tetrahedron
ABCD originating from vertex A in ratios of 2 : 1, 1 : 2 and 4 : 1 counting from
vertex A. Let P , Q and R be the intersection points of this plane with lines AB,
AC and AD. Find ratios AP : PB, AQ : QS and AR : RD.

2.30. In a regular hexagonal pyramid SABCDEF (with vertex S) three points
are taken on the diagonal AD that divide it into 4 equal parts. Through these
points sections parallel to plane SAB are drawn. Find the ratio of areas of the
obtained sections.

2.31. A section of a regular quadrilateral pyramid is a regular pentagon. Prove
that the lateral faces of this pyramid are equilateral triangles.

§6. Unfoldings

2.32. Prove that all the faces of tetrahedron ABCD are equal if and only if one
of the following conditions holds:

a) sums of the plane angles at some three vertices of the tetrahedron are equal
to 180◦;

b) sums of the plane angles at some two vertices are equal to 180◦ and, moreover,
some two opposite edges are equal;

c) the sum of the plane angles at some vertex is equal to 180◦ and, moreover,
there are two pairs of equal opposite edges in the tetrahedron.

2.33. Prove that if the sum of the plane angles at a vertex of a pyramid is
greater than 180◦, then each of its lateral edges is smaller than a semiperimeter of
the base.

2.34. Let SA, SB , SC and SD be the sums of the plane angles of tetrahedron
ABCD at vertices A, B, C and D, respectively. Prove that if SA = SB and
SC = SD, then ∠ABC = ∠BAD and ∠ACD = ∠BDC.

Problems for independent study

2.35. The length of the edge of cube ABCDA1B1C1D1 is equal to a. Let P ,
K and L be the midpoints of edges AA1, A1D1 and B1C1; let Q be the center of
face CC1D1D. Segment MN with the endpoints on lines AD and KL intersects
line PQ and is perpendicular to it. Find the length of this segment.

2.36. The number of vertices of a polygon is equal to n. Prove that there is a
projection of this polygon the number of vertices of which is a) not less than 4; b)
not greater than n− 1.

2.37. Projections of a right triangle to faces of a dihedral angle of value α are
equilateral triangles with side 1 each. Find the hypothenuse of the right triangle.

2.38. Prove that if the lateral surface of a cylinder is intersected by a slanted
plane and then cut along the generator and unfolded onto a plane, then the curve
of the section is a graph oof the sine function.

2.39. The volume of tetrahedron ABCD is equal to 5. Through the midpoints
of edges AD and BC a plane is drawn that intersects edge CD at point M and
DM : CM = 2 : 3. Compute the area of the section of the tetrahedron with the
indicated plane if the distance from vertex A to the plane is equal to 1.
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2.40. In a regular quadrilateral pyramid SABCD with vertex S, a side at the
base is equal to a and the angle between a lateral edge and the plane of the base is
equal to α. A plane parallel to AC and BS intersects pyramid so that a circle can
be inscribed in the section. Find the radius of this circle.

2.41. The length of an edge of a regular tetrahedron is equal to a. Plane Π passes
through vertex B and the midpoints of edges AC and AD. A ball is tangent to lines
AB, AC, AD and the part of plane Π, which is confined inside the tetrahedron.
Find the radius of this ball.

2.42. The edge of a regular tetrahedron ABCD is equal to a. Let M be the
center of face ADC; let N be the midpoint of edge BC. Find the radius of the ball
inscribed in the trihedral angle A and tangent to line MN .

2.43. The dihedral angle at edge AB of tetrahedron ABCD is a right one; M
is the midpoint of edge CD. Prove that the area of triangle AMB is four times
smaller than the area of the parallelogram whose sides are equal and parallel to
segments AB and CD.

Solutions

Figure 17 (Sol. 2.1)

2.1. Consider the projection of the given parallelepiped to plane ABC parallel
to line A1D (Fig. 17). From this figure it is clear that

AM : MC1 = AD : BC1 = 1 : 2.

2.2. a) First solution. Consider projection of the given cube to a plane
perpendicular to line B1C (Fig. 18 a)). On this figure, line B1C is depicted by a dot
and segment MN by the perpendicular dropped from this dot to line A1B. It is also
clear that, on the figure, A1B1 : B1B =

√
2 : 1. Since A1M : MN = A1B1 : B1B

and MN : MB = A1B1 : B1B, it follows that A1M : MB = A1B
2
1 : B1B

2 = 2 : 1.
Second solution. Consider the projection of the given cube to the plane per-

pendicular to line AC1 (Fig. 18 b). Line AC1 is perpendicular to the planes of
triangles A1BD and B1CD1 and, therefore, it is perpendicular to lines A1B and
B1C, i.e., segment MN is parallel to AC1. Thus, segment MN is plotted on the
projection by the dot — the intersection point of segments A1B and B1C. There-
fore, on segment MN we have

A1M : MB = A1C : BB1 = 2 : 1.
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Figure 18 (Sol. 2.2 a))

b) Consider the projection of the cube to the plane perpendicular to diagonal
B1D (Fig. 19). On the projection, hexagon ABCC1D1A1 is a regular one and line
MN passes through its center; let L be the intersection point of lines MN and
AD1, P the intersection point of line AA1 with the line passing through point D1

parallel to MN . It is easy to see that 4ADM = 4A1D1P ; hence, AM = A1P .
Therefore,

BC1 : BN = AD1 : D1L = AP : PM = (AA1 + AM) : AA1 = 1 + AM : AA1,

i.e., the desired difference of ratios is equal to 1.

Figure 19 (Sol. 2.2 b))

2.3. Let A1, B1 and C1 be the projections of the vertices of the given equilateral
triangle ABC to a line perpendicular to the given plane. If the angles between the
given plane and lines AB, BC and CA are equal to γ, α and β, respectively, then
A1B1 = a sin γ, B1C1 = a sin α and C1A1 = a sinβ, where a is the length of the
side of triangle ABC. Let, for definiteness sake, point C1 lie on segment A1B1.
Then A1B1 = A1C1 + C1B1, i.e., sin γ = sin α + sin β.

2.4. No, this is impossible. Consider the projection to a line perpendicular
to the base. The projections of all the vectors from the base are zeros and the
projection of the sum of vectors of the lateral edges cannot be equal to zero since
the sum of an odd number of 1’s and −1’s is odd.
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2.5. Consider the projection of the tetrahedron to a plane perpendicular to the
line that connects the midpoints of edges AB and CD. This projection maps the
given plane to line LN that passes through the intersection point of the diagonals
of parallelogram ADBC. Clearly, the projections satisfy

B′C ′ : C ′N ′ = A′D′ : D′L′.

2.6. Let K be the intersection point of segments BC1 and B1C. Then planes
ABC1 and AB1C intersect along line AK and planes A1B1C and A1BC1 intersect
along line A1K. Consider the projection to plane ABC parallel to AA1. Both the
projection of point P and the projection of point P1 lie on line AK1, where K1 is
the projection of point K.

Similar arguments show that the projections of points P and P1 lie on lines BL1

and CM1, respectively, where L1 is the projection of the intersection point of lines
AC1 and A1C, M1 is the projection of the intersection point of lines AB1 and A1B.
Therefore, the projections of points P and P1 coincide, i.e., PP1 ‖ AA1.

2.7. Let A1 and B1 be the projections of points A and B to plane Π. Lines AX
and BX form equal angles with plane Π if and only if the right triangles AA1X
and BB1X are similar, i.e., A1X : B1X = A1A : B1B. The locus of the points in
plane the ratio of whose distances from two given points A1 and B1 of the same
plane is either an Apollonius’s circle or a line, see Plain 13.7).

2.8. Let d = AB, where A and B are vertices of the polyhedron. Consider the
projection of the polyhedron to line AB. If the projection of point C lies not on
segment AB but on its continuation, say, beyond point B, then AC > AB.

Therefore, all the points of the polyhedron are mapped into points of segment
AB. Since the length of the projection of a segment to a line does not exceed the
length of the segment itself, it suffices to show that the projection maps points of
at least theree distinct edges into every inner point of segment AB. Let us draw a
plane perpendicular to segment AB through an arbitrary inner point of AB. The
section of the polyhedron by this plane is an n-gon, where n ≥ 3, and, therefore,
the plane intersects at least three distinct edges.

2.9. Let O be the intersection point of line l and plane Π (the case when line l
is parallel to plane Π is obvious); A an arbitrary point on line l distinct from O; A′

its projection to plane Π. Line AA′ is perpendicular to any line in plane Π; hence,
AA′ ⊥ l1. If l ⊥ l1, then AO ⊥ l1; hence, line l1 is perpendicular to plane AOA′

and, therefore, A′O ⊥ l1. If l′ ⊥ l1, then the considerations are similar.
2.10. Let us solve heading b) whose particular case is heading a). The projection

of vertex S to the plane at the base is the center O of a regular polygon A1 . . . A2n−1

and the projection of line SA1 to this plane is line OA1. Since OA1 ⊥ AnAn+1, it
follows that SA1 ⊥ AnAn+1, cf. Problem 2.9.

2.11. Let AH be a height of tetrahedron ABCD. By theorem on three perpen-
diculars BH ⊥ CD if and only if AB ⊥ CD.

2.12. Let BK and BM be heights of triangles ABC and DBC, respectively.
Since BK ⊥ AC and BK ⊥ AD, line BK is perpendicular to plane ADC and,
therefore, BK ⊥ DC. By the theorem on three perpendiculars the projection of
line BK to plane BDC is perpendicular to line DC, i.e., the projection coincides
with line BM .

For heights dropped from vertex C the proof is similar.
2.13. The statement of the problem is obvious for the triangle one of whose

sides is parallel to the intersection line of plane Π with the plane of the polygon.
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Indeed the length of this side does not vary under the projection and the length of
the height dropped to it changes under the projection by a factor of cosϕ.

Now, let us prove that any polygon can be cut into the triangles of the indicated
form. To this end let us draw through all the vertices of the polygon lines parallel
to the intersection line of the planes. These lines divide the polygon into triangles
and trapezoids. It remains to cut each of the trapezoids along any of its diagonals.

2.14. Let ϕ be the dihedral angle at the edge of the regular tetrahedron; O
the projection of vertex D of the regular tetrahedron ABCD to the opposite face.
Then

cos ϕ = SABO : SABD =
1
3
.

2.15. Let S be the area of the lateral face, h the height of the pyramid, a the
length of the side at the base and ϕ the angle to be found. The area of the projection
to the bisector plane of the dihedral angle between the neighbouring lateral faces is
equal for each of these faces to S cos ϕ

2 ; on the other hand, it is equal to 1
2ah sin π

n .
It is also clear that the area of the projection of the lateral face to the plane

passing through its base perpendicularly to the base of the pyramid is equal to
S sin α; on the other hand, it is equal to 1

2ah. Therefore,

cos
ϕ

2
= sin α sin

π

n
.

2.16. The projection of a side of the base to the plane of the first section is
a half of the diagonal of the base and, therefore, the area of the projection of the
second section to the plane of the first section is equal to a half area of the first
section. On the other hand, if the area of the second section is equal to S, then the
area of its projection is equal to S cos α and, therefore, the area of the first section
is equal to 2S cos α.

2.17. Let D′ be the projection of vertex D of pyramid ABCD to the plane of
the base. Then

SABC = ±SBCD′ ± SACD′ ± SABD′ = Sa cosα + Sb cos β + Sc cos γ.

The area of triangle BCD′ is taken with a “−” sign if points D′ and A lie on
distinct sides of line BC and with a + sign otherwise; for areas of triangles ACD′

and ABD′ the sign is similarly selected.
2.18. Not necessarily. Consider a plane perpendicular to the two given planes.

Any figure in this plane possesses the required property only if the projections of
the figure on the given planes are unbounded.

2.19. The diameters of the indicated disks are equal to the length of the pro-
jection of the body to the line along which the given planes intersect.

2.20. Let the considered projection send points B1 and D into inner points of
the projection of the cube (Fig. 20). Then the area of the projection of the cube
is equal to the doubled area of the projection of triangle ACD1, i.e., it is equal
to 2S cos ϕ, where S is the area of triangle ACD1 and ϕ is the angle between the
plane of the projection and plane ACD1. Since the side of triangle ACD1 is equal
to
√

2, we deduce that 2S =
√

3.
The projection of the cube to line l perpendicular to the plane of the projection

coincides with the projection of diagonal B1D to l. Since line B1D is perpendicular
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Figure 20 (Sol. 2.20)

to plane ACD1, the angle between lines l and B1D is also equal to ϕ. Therefore,
the length of the projection of the cube to line l is equal to

B1D cosϕ =
√

3 cos ϕ.

2.21. Let us draw lines perpendicular to plane ABC through vertices A and B
and select points A1 and B1 on them. Let AA1 = x and BB1 = y (if points A1

and B1 lie on different sides of plane ABC, then we assume that the signs of x and
y are distinct). Let a, b and c be the lengths of the sides of the given triangle. It
suffices to verify that numbers x and y can be selected so that triangle A1B1C is
an equilateral one, i.e., so that

x2 + b2 = y2 + a2 and (x2 − y2)2 + c2 = y2 + a2.

Let
a2 − b2 = λ and a2 − c2 = µ, i.e., x2 − y2 = λ and x2 − 2xy = µ.

From the second equation we deduce that 2y = x − µ
x . Inserting this expression

into the first equation we get equation

3u2 + (2µ− 4λ)u− µ2 = 0, where u = x2.

The discriminant D of this quadratic equation is non-negative and, therefore, the
equation has a root x. If x 6= 0, then 2y = x− µ

x . It remains to notice that if x = 0
is the only solution of the obtained equation, i.e., D = 0, then λ = µ = 0 and,
therefore, y = 0 is a solution.

2.22. They must. First, let us prove that if the projections of two convex planar
figures to the coordinate axes coincide, then these figures have a common point.
To this end it suffices to prove that if points K, L, M and N lie on sides AB, BC,
CD and DA of rectangle ABCD, then the intersection point of diagonals AC and
BD belongs to quadrilateral KLMN .

Diagonal AC does not belong to triangles KBL and NDM and diagonal BD
does not belong to triangulars KAN and LCM . Therefore, the intersection point
of diagonals AC and BD does not belong to either of these triangles; hence, it
belongs to quadrilateral KLMN .

The base planes parallel to coordinate ones coincide for the bodies considered.
Let us take one of the base planes. The points of each of the considered bodies
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that lie in this plane constitute a convex figure and the projections of these figures
to the coordinate axes coincide. Therefore, in each base plane there is at least one
common point of the considered bodies.

2.23. Points A, B and C lie in one plane in any case, consequently, we can
consider the section by the plane that contains these points. Since the plane of the
section passes through the tangent points of spheres (of the sphere and the plane),
it follows that in the section we get tangent circles (or a line tangent to a circle).
Let O1 and O2 be the centers of the first and second circles. Since O1A ‖ O2B
and points O1, C and O2 lie on one line, we have ∠AO1C = ∠BO2C. Hence,
∠ACO1 = ∠BCO2, i.e., points A, B and C lie on one line.

2.24. The axial section of the given truncated cone is the circumscribed trape-
zoid ABCD with bases AD = 2R and BC = 2r. Let P be the tangent point of the
inscribed circle with side AB, let O be the center of the inscribed circle. In triangle
ABO, the sum of the angles at vertices A and B is equal to 90◦ because 4ABO is
a right one. Therefore, AP : PO = PO : BP , i.e., PO2 = AP ·BP . It is also clear
that AP = R and BP = r. Therefore, the radius PO of the sphere inscribed in the
cone is equal to

√
Rr; hence,

S = 4π(R2 + Rr + r2).

Expressing the volume of the given truncated cone with the help of the formulas
given in the solutions of Problems 3.7 and 3.11 and equating these expressions we
see that the total area of the cone’s surface is equal to

2π(R2 + Rr + r2) =
S

2

(take into account that the height of the truncated cone is equal to the doubled
radius of the sphere around which it is circumscribed).

2.25. The common perpendicular to the given edges is divided by the planes of
the cube’s faces parallel to them into segments of length y, x and z, where x is the
length of the cube’s edge and y is the length of the segment adjacent to edge a.
The planes of the cube’s faces parallel to the given edges intersect the tetrahedron
along two rectangles. The shorter sides of these rectangles are of the same length
as that of the cube’s edge, x. The sides of these rectangles are easy to compute
and we get x = by

c and x = az
c . Therefore,

c = x + y + z = x +
cx

b
+

cx

a
, i.e., x =

abc

ab + bc + ca
.

2.26. Each side of the obtained polygon belongs to one of the faces of the cube
and, therefore, the number of its sides does not exceed 6. Moreover, the sides that
belong to the opposite faces of the cube are parallel, because the intersection lines
of the plane with two parallel planes are parallel. Hence, the section of the cube
cannot be a regular pentagon: indeed, such a pentagon has no parallel sides. It
is easy to verify that an equilateral triangle, square, or a regular hexagon can be
sections of the cube.

2.27. Consider the disk which is a section of the given body. Let us draw
through its center line l perpendicular to its plane. This line intersects the given
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body along segment AB. All the sections passing through line l are disks with
diameter AB.

2.28. Consider an arbitrary section passing through vertex A. This section is
triangle ABC and its sides AB and AC are generators of the cone, i.e., have a
constant length. Hence, the area of the section is proportional to sinBAC. Angle
BAC varies from 0◦ to ϕ, where ϕ is the angle at the vertex of the axial section of
the cone. If ϕ ≤ 90◦, then the axial section is of the maximal area and if ϕ > 90◦,
then the section with the right angle at vertex A is of maximal area. Therefore,
the conditions of the problem imply that sinϕ = 0.5 and ϕ > 90◦, i.e., ϕ = 120◦.

2.29. Let us first solve the following problem. Let on sides AB and AC of
triangle ABC points L and K be taken so that AL : LB = m and AK : KC = n;
let N be the intersection point of line KL and median AM . Let us compute the
ratio AN : NM .

To this end consider points S and T at which line KL intersects line BC and
the line drawn through point A parallel to BC, respectively. Clearly, AT : SB =
AL : LB = m and AT : SC = AK : KC = n. Hence,

AN : NM = AT : SM = 2AT : (SC + SB) = 2(SC : AT + SB : AT )−1 =
2mn

m + n
.

Observe that all the arguments remain true in the case when points K and L are
taken on the continuations of the sides of the triangle; in which case the numbers
m and n are negative.

Now, suppose that AP : PB = p, AQ : QC = q and AR : RD = r. Then by the
hypothesis

2pq

p + q
= 2,

2qr

q + r
=

1
2
, and

2pr

p + r
= 4.

Solving this system of equations we get p = − 4
5 , q = 4

9 and r = 4
7 . The minus sign

of p means that the given plane intersects not the segment AB but its continuation.
2.30. Let us number the given sections (planes) so that the first of them is the

closest to vertex A and the third one is the most distant from A. Considering the
projection to the plane perpendicular to line CF it is easy to see that the first plane
passes through the midpoint of edge SC and divides edge SD in the ratio of 1:3
counting from point S; the second plane passes through the midpoint of edge SD
and the third one divides it in the ratio of 3:1.

Let the side of the base of the pyramid be equal to 4a and the height of the
lateral face be equal to 4h. Then the first section consists of two trapezoids: one
with height 2h and bases 6a and 4a and the other one with height h and bases 4a
and a. The second section is a trapezoid with height 2h and bases 8a and 2a. The
third section is a trapezoid with height h and bases 6a and 3a. Therefore, the ratio
of areas of the sections is equal to 25:20:9.

2.31. Since a quadrilateral pyramid has five faces, the given section passes
through all the faces. Therefore, we may assume that vertices K, L, M , N and
O of the regular pentagon lie on edges AB, BC, CS, DS and AS, respectively.
Consider the projection to the plane perpendicular to edge BC (Fig. 21). Let
B′K ′ : A′B′ = p. Since M ′K ′ ‖ N ′O′, M ′O′ ‖ K ′L′ and K ′N ′ ‖ M ′L′, it follows
that

B′M ′ : B′S′ = A′O′ : A′S′ = S′N ′ : A′S′ = p.
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Figure 21 (Sol. 2.31)

Therefore, S′O′ : A′S′ = 1 − p; hence, S′N ′ : A′S′ = (1 − p)2 because M ′N ′ ‖
L′O′. Thus, p = S′N ′ : A′S′ = (1− p)2, i.e., p = 3−√5

2 .
Let SA = 1 and ∠ASB = 2ϕ. Then

NO2 = p2 + (1− p)2 − 2p(1− p) cos 2ϕ

and
KO2 = p2 + 4(1− p)2 sin2 ϕ− 4p(1− p) sin2 ϕ.

Equating these expressions and taking into account that cos 2ϕ = 1 − 2 sin2 ϕ let
us divide the result by 1− p. We get

1− 3p = 4(1− 3p) sin2 ϕ.

Since in our case 1− 3p 6= 0, it follows that sin2 ϕ = 1
4 , i.e., ϕ = 30◦.

2.32. a) Let the sum of the plane angles at vertices A, B and C be equal to
180◦. Then the unfolding of the tetrahedron to plane ABC is a triangle and points
A, B and C are the midpoints of the triangle’s sides. Hence, all the faces of the
tetrahedron are equal.

Conversely, if all the faces of the tetrahedron are equal, then any two neigh-
bouring faces constitute a parallelogram in its unfolding. Hence, the unfolding of
the tetrahedron is a triangle, i.e., the sums of plane angles at the vertices of the
tetrahedron are equal to 180◦.

Figure 22 (Sol. 2.32)
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b) Let the sums of plane angles at vertices A and B be equal to 180◦. Let us
consider the unfolding of the tetrahedron to the plane of face ABC (Fig. 22). Two
variants are possible.

1) Edges AB and CD are equal. Then

D1C + D2C = 2AB = D1D2;

hence, C is the midpoint of segment D1D2.
2) Edges distinct from AB and CD are equal. Let, for definiteness, AC = BD.

Then point C belongs to both the midperpendicular to segment D1D2 and to the
circle of radius BD centered at A. One of the intersection points of these sets is the
midpoint of segment D1D2 and the other intersection point lies on the line passing
through D3 parallel to D1D2. In our case the second point does not fit.

c) Let the sum of plane angles at vertex A be equal to 180◦, AB = CD and AD =
BC. Let us consider the unfolding of the tetrahedron to plane ABC and denote
the images of vertex D as plotted on Fig. 22. The opposite sides of quadrilateral
ABCD2 are equal, hence, it is a parallelogram. Therefore, segments CB and
AD3 are parallel and equal and, therefore, ACBD3 is a parallelogram. Thus, the
unfolding of the tetrahedron is a triangle and A, B and C are the midpoints of its
sides.

Figure 23 (Sol. 2.33)

2.33. Let SA1 . . . An be the given pyramid. Let us cut its lateral surface along
edge SA1 and unfold it on the plane (Fig. 23). By the hypothesis point S lies inside
polygon A1 . . . AnA′1. Let B be the intersection point of the extension of segment
A1S beyond point S with a side of this polygon. If a and b aree the lengths of
broken lines A1A2 . . . B and B . . . AnA′1, then A1S + SB < a and A′1S < SB + b.
Hence, 2A1S < a + b.

2.34. Since the sum of the angles of each of the tetrahedron’s faces is equal to
180◦, it follows that

SA + SB + SC + SD = 4 · 180◦.

Let, for definiteness sake, SA ≤ SC . Then 360◦ − SC = SA ≤ 180◦. Consider the
unfolding of the given tetrahedron to plane ABC (Fig. 24).

Since ∠AD3C = ∠D1D3D2 and AD3 : D3C = D1D3 : D3D2, it follows that
4ACD3 ∼ 4D1D2D3 and the similarity coefficient is equal to the ratio of the
lateral side to the base in the isosceles triangle with angle SA at the vertex. Hence,
AC = D1B. Similarly, CB = AD1. Therefore, 4ABC = 4BAD1 = 4BAD. We
similarly prove that 4ACD = 4BDC.
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Figure 24 (Sol. 2.34)

CHAPTER 3. VOLUME

§1. Formulas for the volumes of a tetrahedron and a pyramid

3.1. Three lines intersect at point A. On each of them two points are taken: B
and B′, C and C ′, D and D′, respectively. Prove that

VABCD : VAB′C′D′ = (AB ·AC ·AD) : (AB′ ·AC ′ ·AD′).

3.2. Prove that the volume of tetrahedron ABCD is equal to

AB ·AC ·AD · sin β sin γ sin
∠D

6
,

where β and γ are plane angles at vertex A opposite to edges AB and AC, respec-
tively, and ∠D is the dihedral angle at edge AD.

3.3. The areas of two faces of tetrahedron are equal to S1 and S2, a is the length
of the common edge of these faces, α the dihedral angle between them. Prove that
the volume V of the tetrahedron is equal to 2S1S2 sin α

3a .
3.4. Prove that the volume of tetrahedron ABCD is equal to dAB · CD sin ϕ

6 ,
where d is the distance between lines AB and CD and ϕ is the angle between them.

3.5. Point K belongs to the base of pyramid of vertex O. Prove that the volume
of the pyramid is equal to S · KO

3 , where S is the area of the projection of the base
to the plane perpendicular to KO.

3.6. In parallelepiped ABCDA1B1C1D1, diagonal AC1 is equal to d. Prove
that there exists a triangle the lengths of whose sides are equal to distances from
vertices A1, B and D to diagonal AC1 and the volume of this parallelepiped is
equal to 2dS, where S is the area of this triangle.

Typeset by AMS-TEX
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§2. Formulas for the volumes of polyhedrons and bodies of revolution

3.7. Prove that the volume of the polyhedron circumscribed about a sphere of
radius R is equal to 1

3 , where S is the area of the polyhedron’s surface.
3.8. Prove that the ratio of volumes of the sphere to that of the truncated cone

circumscribed about it is equal to the ratio of the total areas of their surfaces.
3.9. A ball of radius R is tangent to one of the bases of a truncated cone and

is tangent to its lateral surface along a circle which is the circle of the other base
of the cone. Find the volume of the body consisting of the cone and the ball if the
total area of the surface of this body is equal to S.

3.10. a) The radius of a right circular cylinder and its height are equal to
R. Consider the ball of radius R centered at the center O of the lower base of the
cylinder and the cone with vertex at O whose base is the upper base of the cylinder.
Prove that the volume of the cone is equal to the volume of the part of the cylinder
which lies outside the ball. In the proof make use of the equality of the areas of
sections parallel to the bases. (Archimedus)

b) Assuming that the formulas for the volume of the cylinder and the cone are
known, deduce the formula for the volume of a ball.

3.11. Find the volume V of a truncated cone with height h and with the radii
of the bases R and r.

3.12. Given a plane convex figure of perimeter 2p and area S. Consider a body
consisting of points whose distance from this figure does not exceed d. Find the
volume of this body.

3.13. The volume of a convex polygon is equal to V and the area of its surface
is equal to S; the length of the i-th edge is equal to li, the dihedral angle at this
edge is equal to ϕi. Consider the body the distance of whose points to the polygon
does not exceed d. Find the volume and the surface area of this body.

3.14. All the vertices of a convex polyhedron lie on two parallel planes. Prove
that the volume of the polyhedron is equal to 1

6h(S1 + S2 + 4S), where S1 and S2

are the areas of the faces lying on the given planes and S is the area of the section
of the polyhedron by the plane equidistant from the given ones, h the distance
between the given plane.

§3. Properties of the volume

3.15. Two skew lines in space are given. The opposite edges of a tetrahedron
are moving, as solid bodies, along these lines, whereas the other dimensions of the
tetrahedron may vary. Prove that the volume of the tetrahedron does not vary.

3.16. Three parallel lines a, b and c in space are given. An edge of a tetrahedron
is moved along line a so that its length does not vary and the two other vertices
move along lines b and c. Prove that the volume of tetrahedron does not vary.

3.17. Prove that the plane that only intersects a lateral surface of the cylinder
divides its volume in the same ratio in which it divides the axis of the cylinder.

3.18. Prove that a plane passing through the midpoints of two skew edges of a
tetrahedron divides it into two parts of equal volume.

3.19. Parallel lines a, b, c and d intersect a plane at points A, B, C and D and
another plane at points A′, B′, C ′ and D′. Prove that the volumes of tetrahedrons
A′BCD and AB′C ′D′ are equal.

3.20. In the planes of the faces of tetrahedron ABCD points A1, B1, C1 and
D1 are taken so that the lines AA1, BB1, CC1 and DD1 are parallel. Find the
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ratio of volumes of tetrahedrons ABCD and A1B1C1D1.

§4. Computation of volumes

3.21. Planes ABC1 and A1B1C divide triangular prism ABCAB1C1 into four
parts. Find the ratio of volumes of these parts.

3.22. The volume of parallelepiped ABCDA1B1C1D1 is equal to V . Find the
volume of the common part of tetrahedrons ABCD1 and A1BC1D.

3.23. Consider a tetrahedron. A plane is parallel to two of the tetrahedron’s
skew edges and divides one of the other edges in the ratio of 2:1 What is the ratio
in which the volume of a tetrahedron is divided by the plane?

3.24. On two parallel lines we take similarly directed vectors {AA1}, {BB1}
and {CC1}. Prove that the volume of the convex polyhedron ABCA1B1C1 is
equal to 1

3S(AA1 + BB1 + CC1), where S is the area of the triangle obtained at
the intersection of these lines by a plane perpendicular to them.

3.25. Let M be the intersection point of the medians of tetrahedron ABCD (see
$). Prove that there exists a quadrilateral whose sides are equal to segments that
connect M with the vertices of the tetrahedron and are parallel to them. Compute
the volume of the tetrahedron given by this spatial quadrilateral if the volume of
tetrahedron ABCD is equal to V .

3.26. Through a height of a equilateral triangle with side a a plane perpendicular
to the triangle’s plane is drawn; in the new plane line l parallel to the height of
the triangle is taken. Find the volume of the body obtained after rotation of the
triangle about line l.

3.27. Lines AC and BD the angle between which is equal to α (α < 90◦) are
tangent to a ball of radius R at diametrically opposite points A and B. Line CD is
also tangent to the ball and the angle between AB and CD is equal to ϕ (ϕ < 90◦).
Find the volume of tetrahedron ABCD.

3.28. Point O lies on the segment that connects the vertex of the triangular
pyramid of volume V with the intersection point of medians of the base. Find the
volume of the common part of the given pyramid and the pyramid symmetric to it
through point O if point O divides the above described segment in the ratio of: a)
1:1; b) 3:1; c) 2:1; d) 4:1 (counting from the vertex).

3.29. The sides of a spatial quadrilateral KLMN are perpendicular to the faces
of tetrahedron ABCD and their lengths are equal to the areas of the corresponding
faces. Find the volume of tetrahedron KLMN if the volume of tetrahedron ABCD
is equal to V .

3.30. A lateral edge of a regular prism ABCA1B1C1 is equal to a; the height of
the basis of the prism is also equal to a. Planes perpendicular to lines AB and AC1

are drawn through point A and planes perpendicular to A1B and A1C are drawn
through point A1. Find the volume of the figure bounded by these four planes and
plane B1BCC1.

3.31. Tetrahedrons ABCD and A1B1C1D1 are placed so that the vertices of
each of them lie in the corresponding planes of the faces of the other tetrahedron
(i.e., A lies in plane B1C1D1, etc.). Moreover, A1 coincides with the intersection
point of the medians of triangle BCD and lines BD1, CB1 and DC1 divide segments
AC, AD and AB, respectively, in halves. Find the volume of the common part of
the tetrahedrons if the volume of tetrahedron ABCD is equal to V .
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§5. An auxiliary volume

3.32. Prove that the bisector plane of a dihedral angle at an edge of a tetrahedron
divides the opposite edge into parts proportional to areas of the faces that confine
this angle.

3.33. In tetrahedron ABCD the areas of faces ABC and ABD are equal to
p and q and the angle between them is equal to α. Find the area of the section
passing through edge AB and the center of the ball inscribed in the tetrahedron.

3.34. Prove that if x1, x2, x3, x4 are distances from an arbitrary point inside
a tetrahedron to its faces and h1, h2, h3, h4 are the corresponding heights of the
tetrahedron, then

x1

h1
+

x2

h2
+

x3

h3
+

x4

h4
= 1.

3.35. On face ABC of tetrahedron ABCD a point O is taken and segments OA,
OB1 and OC1 are drawn through it so that they are parallel to the edges DA, DB
and DC, respectively, to the intersection with faces of the tetrahedron. Prove that

OA1

DA
+

OB1

DB
+

OC1

DC
= 1.

3.36. Let r be the radius of the sphere inscribed in a tetrahedron; ra, rb, rc and
rd the radii of spheres each of which is tangent to one face and the extensions of
the other three faces of the tetrahedron. Prove that

1
ra

+
1
rb

+
1
rc

+
1
rd

=
2
r
.

3.37. Given a convex quadrangular pyramid MABCD with vertex M and a
plane that intersects edges MA, MB, MC and MD at points A1, B1, C1 and D1,
respectively. Prove that

SBCD
MA

MA1
+ SABD

MC

MC1
= SABC

MD

MD1
+ SACD

MB

MB1
.

3.38. The lateral faces of a triangular pyramid are of equal area and the angles
they constitute with the base are equal to α, β and γ. Find the ratio of the radius
of the ball inscribed in this pyramid to the radius of the ball which is tangent to
the base of the pyramid and the extensions of the lateral sides.

Problems for independent study

3.39. Two opposite vertices of the cube coincide with the centers of the bases
of a cylinder and its other vertices lie on the lateral surface of the cylinder. Find
the ratio of volumes of the cylinder and the cube.

3.40. Inside a prism of volume V a point O is taken. Find the sum of volumes
of the pyramids with vertex O whose bases are lateral faces of the prism.

3.41. In what ratio the volume of the cube is divided by the plane passing
through one of the cubes vertices and the centers of the two faces that do not
contain this vertex?

3.42. Segment EF does not lie in plane of the parallelogram ABCD. Prove that
the volume of tetrahedron EFAD is equal to either sum or difference of volumes
of tetrahedrons EFAB and EFAC.
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3.43. The lateral faces of an n-gonal pyramid are lateral faces of regular quad-
rangular pyramids. The vertices of the bases of quadrangular pyramids distinct
from the vertices of an n-gonal pyramid pairwise coincide. Find the ratio of vol-
umes of the pyramids.

3.44. The dihedral angle at edge AB of tetrahedron ABCD is a right one; M
is the midpoint of edge CD. Prove that the area of triangle AMB is a half area of
the parallelogram whose diagonals are equal to and parallel to edges AB and CD.

3.45. Faces ABD, BCD and CAD of tetrahedron ABCD serve as lower bases
of the three prisms; the planes of their upper bases intersect at point P . Prove that
the sum of volumes of these three prisms is equal to the volume of the prism whose
base is face ABC and the lateral bases are equal and parallel to segment PD.

3.46. A regular tetrahedron of volume V is rotated through an angle of α (0 <
α < π) around a line that connects the midpoints of its skew edges. Find the
volume of the common part of the initial tetrahedron and the rotated one.

3.47. A cube with edge a is rotated through the angle of α about the diagonal.
Find the volume of the common part of the initial cube and the rotated one.

3.48. The base of a quadrilateral pyramid SABCD is square ABCD with side
a. The angles between the opposite lateral faces are right ones; and the dihedral
angle at edge SA is equal to α. Find the volume of the pyramid.

Solutions

3.1. Let h and h′ be the lengths of perpendiculars dropped from points D and
D′ to plane ABC; let S and S′ be the areas of triangles ABC and AB′C ′. Clearly,
h : h′ = AD : AD′ and S : S′ = (AB ·AC) : (AB′ ·AC ′). It remains to notice that

VABCD : VAB′C′D′ = hS : h′S′.

3.2. The height of triangle ABD dropped from vertex B is equal to AB sin γ
and, therefore, the height of the tetrahedron dropped to plane ACD is equal to
AB sin γ sin D. It is also clear that the area of triangle ACD is equal to 1

2AC ·
AD sin β.

3.3. Let h1 and h2 be heights of the given faces dropped to their common side.
Then

V =
1
3
(h1 sinα)S2 =

ah1h2 sin α

6
.

It remains to notice that h1 = 2S1
a , h2 = 2S2

a .
3.4. Consider the parallelepiped formed by planes passing through the edges of

the tetrahedron parallel to the opposite edges. The planes of the faces of the initial
tetrahedron cut off the parallelepiped four tetrahedrons; the volume of each of these
tetrahedrons is 1

6 of the volume of the parallelepiped. Therefore, the volume of the
tetrahedron constitutes 1

3 of the volume of the parallelepiped. The volume of the
parallelepiped can be easily expressed in terms of the initial data: its face is a
parallelogram with diagonals of length AB and CD and angle ϕ between them and
the height dropped to this face is equal to d.

3.5. The angle α between line KO and height h of the pyramid is equal to the
angle between the plane of the base and the plane perpendicular to KO. Hence,
h = KO cos α and S = S′ cosα, where S′ is the area of the base (cf. Problem 2.13).
Therefore, S ·KO = S′h.
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Figure 25 (3.6)

3.6. Consider the projection of the given parallelepiped to the plane perpendic-
ular to line AC1 (Fig. 25). In what follows in this solution we make use of notations
from Fig. 25.

On this figure the lengths of segments AA1, AB and AD are equal to distances
from vertices A1, B and D of the parallelepiped to the diagonal AC1 and the sides
of triangle AA1B1 are equal to these segments. Since the area of this triangle is
equal to S, the area of triangle A1DB is equal to 3S. If M is the intersection point
of plane A1DB with diagonal AC1, then AM = 1

3d (Problem 2.1) and, therefore, by
Problem 3.5 the volume of tetrahedron AA1DB is equal to 1

3dS. It is also clear that
the volume of this tetrahedron constitutes 1

6 of the volume of the parallelepiped.
3.7. Let us connect the center of the sphere with the vertices of the polyhedron

and, therefore, divide the polyhedron into pyramids. The heights of these pyramids
are equal to the radius of the sphere and the faces of the polyhedron are their bases.
Therefore, the sum of volumes of these pyramids is equal to 1

3SR, where S is the
sum of areas of their bases, i.e., the surface area of the polyhedron.

3.8. Both the cone and the sphere itself can be considered as a limit of poly-
hedrons circumscribed about the given sphere. It remains to notice that for each
of these polyhedrons the formula V = 1

3SR holds, where V is the volume, S the
surface area of the polyhedron and R the radius of the given sphere (Problem 3.7)
holds.

3.9. The arguments literally the same as in the proof of Problem 3.8 show that
the volume of this body is equal to 1

3SR.
3.10. a) Consider an arbitrary section parallel to the bases. Let MP be the

radius of the section of the cone, MC the radius of the section of the ball, MB the
radius of the section of the cylinder. We have to verify that

πMP 2 = πMB2 − πMC2, i.e., MB2 = MP 2 + MC2.

To prove this equality it suffices to notice that MB = OC, MP = MO and triangle
COM is a right one.

b) Volumes of the cylinder and the cone considered in heading a) are equal to πR3

and 1
3πR3, respectively. The volume of the ball of radius R is twice the difference,

of volumes of the cylinder and the cone, hence, it is equal to 4
3πR3.
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3.11. The given cone is obtained by cutting off the cone with height x and the
radius r of the base from the cone with height x + h and the radius R of the base.
Therefore,

V =
π(R2(x + h)− r2x)

3
.

Since x : r = (x + h) : R, then x = rh
R−r and x + h = Rh

R−r ; hence,

V =
π(r2 + rR + R2)h

3
.

3.12. First, suppose that the given planar figure is a convex n-gon. Then the
considered body consists of a prism of volume 2dS, n half cylinders with total
volume πpd2 and n bodies from which one can compose a ball of volume 4

3πd3. Let
us describe the latter n bodies in detail. Consider a ball of radius d and cut it by
semidisks (with centers at the center of the ball) obtained by shifts of the bases of
semicylinders. This is the partition of the ball into n bodies.

Thus, if a figure is a convex polyhedron, then the volume of the body is equal to

2dS + πpd2 +
4
3
πd3.

This formula remains true for an arbitrary convex figure.
3.13. As in the preceding problem, let us divide the obtained body into the initial

polyhedron, prisms corresponding to faces, the parts of cylinders corresponding to
edges, and the parts of the ball of radius d corresponding to vertices. It is now easy
to verify that the volume of the obtained body is equal to

V + Sd +
1
2
d2

∑

i

(π − ϕi)li +
4
3
πd3

and the total surface of its area is equal to

S + d
∑

i

(π − ϕi)li + 4πd2.

3.14. First solution. Let O be the inner point of the polyhedron equidistant
from the given planes. The area of the polyhedron confined between the given
planes can be separated into triangles with vertices in the vertices of the polyhedron.
Therefore, the polyhedron is divided into two pyramids with vertex O whose bases
are the faces with areas S1 and S2 and several triangular pyramids with vertex O
whose bases are the indicated triangles. The volumes of the first two pyramids are
equal to 1

6hS1 and 1
6hS2. The volume of the i-th triangular pyramid is equal to

1
32hsi, where si is the area of the section of this pyramid by the plane equidistant
from the given ones; indeed the volume of the pyramid is 4 times the volume of the
tetrahedron that the indicated plane cuts off it and the volume of the tetrahedron
is equal to 1

6hsi. It is also clear that s1 + · · ·+ sn = S.
Second solution. Let S(t) be the area of the section of the polygon by the

plane whose distance from the first plane is equal to t. Let us prove that S(t) is a
quadratic function (for 0 ≤ t ≤ h), i.e., that

S(t) = at2 + bt + c.
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Figure 26 (Sol. 3.14)

To this end, consider the projection of the polyhedron to the first plane along a
line chosen so that the projections of the upper and the lower faces do not intersect
(Fig. 26). The areas of both shaded parts are quadratic functions in t; hence, S(t)
— the area of the unshaded part — is also a quadratic function.

For any quadratic function S(t), where t runs from 0 to h, we can select a
sufficiently simple polyhedron with exactly the same function S(t) :

if a > 0 we can take a truncated pyramid;
if a < 0 we can take the part of the tetrahedron confined between two planes

parallel to two of its skew edges.
The volumes of polyhedrons with equal functions S(t) are equal (by Cavalieri’s

principle). It is easy to verify that any of the new simple polyhedrons can be split
into tetrahedrons whose vertices lie in given planes.

For them the required formula is easy to verify (if two vertices of a tetrahedron
lie in one plane and the other two vertices lie in another plane we have to make use
of the formula from Problem 3.4).

3.15. The volume of such a tetrahedron is equal to 1
6abd sinϕ, where a and b

are the lengths of the edges, d is the distance between skew lines and ϕ is the angle
between them (Problem 3.4).

3.16. The projection to the plane perpendicular to given lines sends a, b and c
into points A, B and C, respectively. Let s be the area of triangle ABC; KS the
edge of the tetrahedron moving along line a. By Problem 3.5 the volume of the
considered tetrahedron is equal to 1

3sKS.
3.17. Let plane Π intersect the axis of the cylinder at point O. Let us draw

through O plane Π′ parallel to the basis of the cylinder. The planes Π and Π′ divide
the cylinder into 4 parts; of these, the two parts confined between the planes Π and
Π′ are of equal volume. Therefore, the volumes of the parts into which the cylinder
is divided by plane Π are equal to the volumes of the parts into which it is divided
by plane Π′. It is also clear that the ratio of the volumes of cylinders with equal
bases is equal to the ratio of their heights.

3.18. Let M and K be the midpoints of edges AB and CD of tetrahedron
ABCD. Let, for definiteness, the plane passing through M and K intersect edges
AD and BC at points L and N (Fig. 27). Plane DMC divides the tetrahedron into
two parts of equal volume, consequenlty, it suffices to verify that the volumes of
tetrahedrons DKLM and CKNM are equal. The volume of tetrahedron CKBM
is equal to 1

4 of the volume of tetrahedron ABCD and the ratio of the volumes of
tetrahedrons CKBM and CKNM is equal to BC : CN . Similarly, the ratio of a
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Figure 27 (Sol. 3.18)

quarter of the volume of tetrahedron ABCD to the volume of tetrahedron DKLM
is equal to AD : DL. It remains to notice that BC : CN = AD : DL (Problem
2.5).

3.19. By Problem 3.16 VA′ABC = VAA′B′C′ . Writing down similar equalities
for the volumes of tetrahedrons A′ADC and A′ABD and expressing VA′BCD and
VAB′C′D′ in terms of these volumes we get the statement desired.

3.20. Let A2 be the intersection point of line AA1 with plane B1C1D1. Let us
prove that A1A2 = 3A1A. Then VABCD : VA2BCD = 1 : 3 and making use of the
result of Problem 3.19 we finally get

VABCD : VA1B1C1D1 = VABCD : VA2BCD = 1 : 3.

Among the colinear vectors {BB1}, {CC1} and {DD1} there are two directed
similarly; for definiteness, assume that these are {BB1} and {CC1}. Let M be the
intersection point of lines BC1 and CB1. Lines BC1 and CB1 belong to planes
ADB and ADC, respectively, hence, point M belongs to line AD.

Figure 28 (Sol. 3.20)

Let us draw plane through parallel lines AA1 and DD1; it passes through point
M and intersects segments BC and B1C1 at certain points L and K (Fig. 28). It
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is easy to verify that M is the midpoint of segment KL, point A belongs to lines
DM and D1L, point A1 belongs to line DL, point A2 belongs to line D1K. Hence,

{A1A} : {AA2} = {LM} : {LK} = 1 : 2

and, therefore, A1A2 = 3AA1.
3.21. Let P and Q be the midpoints of segments AC1 and BC1, respectively, i.e.,

PQ be the intersection line of the given planes. The ratio of volumes of tetrahedrons
C1PQC and C1ABC is equal to

(C1P : C1A)(C1Q : C1B) = 1 : 4

(see Problem 3.1). It is also clear that the volume of tetrahedron C1ABC consti-
tutes 1

3 of the volume of the prism. Making use of this fact, it is easy to verify that
the desired ratio of volumes is equal to 1:3:3:5.

3.22. The common part of the indicated tetrahedrons is a convex polyhedron
with vertices at the centers of the faces of the parallelepiped. The plane equidis-
tant from two opposite faces of the parallelepiped cuts this polyhedron into two
quadrangular pyramids the volume of each of which is equal to 1

12V .
3.23. The section of the tetrahedron with the given plane is a parallelogram.

Each of the two obtained parts of the tetrahedron can be divided into a pyramid,
whose base is this parallelogram, and a tetrahedron. The volumes of these pyramids
and tetrahedrons can be expressed through the lengths a and b of the skew edges,
the distance d between them and angle ϕ (for tetrahedrons one has to make use
of the formula from Problem 3.4). Thus, we find that the volumes of the obtained
parts are equal to 10v

81 and 7v
162 , where v = abd sin ϕ, and the ratio of the volumes is

equal to 20
7 .

3.24. On the extension of edge BB1 beyond point B1 mark segment B1B2 equal
to edge AA1. Let K be the midpoint of segment A1B1, i.e., the intersection point of
segments A1B1 and AB2. Since the volumes of tetrahedra A1KC1A and B1KC1B2

are equal, the volumes of polyhedrons ABCA1B1C1 and ABCB2C1 are also equal.
Similar arguments show that the volume of polyhedron ABCB2C1 is equal to the
volume of pyramid ABCC3, where CC3 = AA1 + BB1 + CC1. It remains to make
use of the formula from Problem 3.5.

Figure 29 (Sol. 3.24)

3.25. Let us complete pyramid MABC to a parallelepiped (see Fig. 29). Let
MK be the diagonal of the parallelepiped. Since

{MA}+ {MB}+ {MC}+ {MD} = {0}
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(see Problem 14.3 a)), then {KM} = {MD}. Therefore, quadrilateral MCLK is
the one to be found. The volumes of tetrahedrons MCKL and MABC are equal,
because each of them constitutes 1

6 of the volume of the considered parallelepiped.
It is also clear that the volume of tetrahedron MABC is equal to 1

4V .

Remark. It follows from the solution of Problem 7.15 that the collection of
vectors of the sides of the required spatial quadrilateral is uniquely determined.
Therefore, there exist 6 distinct such quadrilaterals and the volumes of all the
tetrahedrons determined by them are equal (cf. Problem 8.26).

3.26. First, notice that after the rotation (in plane) of the segment of length
2d about a point that lies on the midperpendicular to this segment at distance x
from the segment we get an annulus with the inner radius x and the outer radius√

x2 + d2; the area of this annulus is equal to πd2, i.e., it does not depend on
x. Hence, the section of the given body by the plane perpendicular to the axis
of rotation is an annulus whose area does not depend on the position of line l.
Therefore, it suffices to consider the case when the axis of rotation is the height of
the triangle. In this case the volume of the body of rotation – the cone – is equal
to πa3√3

24 .
3.27. Let AC = x, BD = y; let D1 be the projection of D to the plane tangent

to the ball at point A. In triangle CAD1, angle ∠A is equal to either α or 180◦−α
hence,

x2 + y2 ∓ 2xy cosα = CD2
1 = 4R2 tan2 ϕ.

It is also clear that
x + y = CD =

2R

cosϕ
.

Therefore, either xy = R2

cos2 α
2

or xy = R2

sin2 α
2
. Taking into account that (x + y)2 ≥

4xy we see that the first solution is possible for ϕ ≥ α
2 and the second one for

ϕ ≥ 1
2 (π − α). Since the volume V of tetrahedron ABCD is equal to 1

3xyR sin α,
the final answer is as follows:

V =
{ 2

3R3 tan α
2 if α ≤ 2ϕ < π − α

either 2
3R3 tan α

2 or 2
3R3 cot α

2 if π − α ≤ 2ϕ < π.

3.28. On Figures 30 a)–d) the common parts of the pyramids in all the four
cases are plotted.

a) The common part is a parallelepiped (Fig. 30 a)). This parallelepiped is
obtained from the initial pyramid by cutting off the three pyramids similar to it
with coefficient 2

3 ; the three pyramids similar to the initial one with coefficient 1
3

are common ones for the pairs of pyramids that are cut off. Hence, the volume of
the pyramid is equal to

V (1− 3(
2
3
)2 + 3(

1
3
)3) =

2V

9
.

b) The common part is an “octahedron” (Fig. 30 b)). The volume of this
polyhedron is equal to V (1− 4( 1

2 )3) = 1
2V .

c) The common part is depicted on Fig. 30 c). To compute its volume, we
have to subtract from the volume of the initial pyramid the volume of the pyramid
similar to it with coefficient 1

3 (on the figure this smaller pyramid is the one above)
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Figure 30 (Sol. 3.28)

then subtract the volume of three pyramids similar to the initial one with coefficient
5
9 and add the volume of three pyramids similar to the initial one with coefficient
1
9 . Therefore, the volume of the common part is equal to

V (1− (
1
3
)3 − 3(

5
9
)3 + 3(

1
9
)3) =

110V

243
.

d) The common part is depicted on Fig. 30 d). Its volume is equal to

V (1− (
3
5
)3 − 3(

7
15

)3 + 3(
1
15

)3) =
12V

25
.

3.29. The existence of such a special quadrilateral KLMN for any tetrahedron
ABCD follows from the statement of Problem 7.19; there are several such quadri-
laterals but the volumes of all the tetrahedrons determined by them are equal
(Problem 8.26).

Making use of the formula of Problem 3.2 it is easy to prove that

V 3 = (
abc

6
)3p2q,

where a, b and c are the lengths of the edges coming out of vertex A; p the product
of the sines of the plane angles at vertex A; q the product of the sines of dihedral
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angles of the trihedral angle at vertex A. From an arbitrary point O from inside
tetrahedron ABCD drop perpendiculars to faces intersecting at A and depict on
these perpendiculars segments OP , OQ and OR whose length measured in the
chosen linear units is equal to the areas of the respective faces computed in the
corresponding area units. It follows from the solution of Problem 8.26 that the
volume W of tetrahedron OPQR is equal to the volume of tetrahedron KLMN .
The plane (resp. dihedral) angles of the trihedral angle OPQR complement the
dihedral (resp. planar) angles of the trihedral angle ABCD to 180◦ (cf. Problem
5.1). Hence, W 3 = (S1S2S3

6 )3q2p, where S1, S2, S3 are the areas of the faces

intersecting at vertex A. Since S1S2S3 = (abc)2p
8 , it follows that

W 3 = (
1
6
)3(

1
8
)3(abc)6p4q2 = (

3
4
V 2)3, i.e., W =

3
4
V 2.

3.30. Let M and N be the midpoints of edges B1C1 and BC, respectively. The
considered pairs of planes are symmetric through plane AA1MN . On ray MN take
point K so that MK = 2MN . Since AA1MN is a square, then KA ⊥ AM ; hence,
line AK is perpendicular to plane AB1C1, i.e., AK is the intersection line of the
considered planes passing through point A.

We similarly construct the intersection line A1L of planes passing through point
A1. Since B1N is the projection of line AB1 to plane BCC1, the plane passing
through point A perpendicularly to AB1 intersects plane BCC1 along the line
perpendicular to line B1N . After similar arguments for the other considered planes
and taking into account that triangles BMC and B1NC1 are equilateral ones, we
see that the obtained planes cut off the plane BCC1B1 a rhombus consisting of
two equilateral triangles with side KL = 3a. The area of this rhombus is equal to
9
√

3
2 a2. The figure to be constructed is a quadrilateral pyramid with this rhombus

as its base and the intersection point S of lines AK and A1L as its vertex. Since
the distance from S to line KL is equal to 3

2a, the volume of this pyramid is equal
to 9

√
3

4 a3.
3.31. Let K, L and M be the midpoints of segments AB, AC and AD, respec-

tively. First, let us prove that K is the midpoint of segment DC1. Point B lies in
plane A1C1D1; hence, point C1 lies in plane A1LB. Let us complement tetrahedron
ABCD to a triangular prism by adding vertices S and T , where {AS} = {DB} and
{AT} = {DC}. Plane A1LB passes through the midpoints of sides CD and AT of
parallelogram CDAT ; hence, it contains line BS. Therefore, S is the intersection
point of line DK with plane A1LB, i.e., S = C1.

We similarly prove that L and M are the midpoints of segments BD1 and CB1.
Thus, tetrahedron A1B1C1D1 is bounded by planes A1LB, A1MC and A1KD and
plane B1C1D1 passing through point A parallel to face BCD.

Let Q be the midpoint of BC,P the intersection point of BL and KQ (Fig. 31).
Plane A1KD cuts off tetrahedron ABCD a tetrahedron DKBQ whose volume is
equal to 1

4V . Planes A1LB and A1MC cut off tetrahedrons of the same volume.
For tetrahedrons cut off by planes A1KD and A1LB the tetrahedron A1BPQ

whose volume is equal to 1
24V is a common one. Therefore, the volume of the

common part of tetrahedrons ABCD and A1B1C1D1 is equal to

V (1− 3
4

+
3
24

) =
3V

8
.
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Figure 31 (Sol. 3.31)

3.32. The ratio of the segments of the edge is equal to the ratio of the heights
dropped from its endpoints to the bisector plane and the latter ratio is equal to
the ratio of volumes of tetrahedrons into which the bisector plane divides the given
tetrahedron. Since the heights dropped from any point of the bisector plane to the
faces of the dihedral angle are equal, the ratio of the volumes of these tetrahedrons
is equal to the ratio of areas of the faces that confine the given dihedral angle.

3.33. Let a = AB, x be the area of the section to be constructed. Making use of
the formula from Problem 3.3 for the volume of tetrahedron ABCD and its parts
we get

2
3

px sin(α
2 )

a
+

2
3

qx sin(α
2 )

a
=

2
3

pq sin α

a
.

Hence, x = 2pq
p+q cos α

2 .
3.34. Let us divide the tetrahedron into 4 triangular pyramids whose bases are

the tetrahedron’s faces and the vertex is at the given point. The indicated sum of
ratios is the sum of ratios of the volumes of these pyramids to the volume of the
tetrahedron. This sum is equal to 1 since the sum of volumes of the pyramids is
equal to the volume of the tetrahedron.

3.35. Parallel segments AD and OA1 form equal angles with plane BCD, con-
sequently, the ratio of the lengths of the heights dropped to this plane from points
O and A is equal to the ratio of lengths of these segments. Hence, VOBCD

VABCD
= OA1

DA .
Writing similar equalities for segments OB1 and OC1 and adding them we get

OA1

DA
+

OB1

DB
+

OC1

DC
=

VOBCD + VOACD + VOABD

VABCD
= 1.

3.36. Let Sa, Sb, Sc and Sd be the areas of faces BCD, ACD, ABD and ABC;
V the volume of the tetrahedron; O the center of the sphere tangent to face BCD
and the extensions of the other three faces. Then

3V = ra(−Sa + Sb + Sc + Sd).

Hence,
1
ra

=
−Sa + Sb + Sc + Sd

3V
.
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Writing similar equalities for the other radii of the escribed spheres and adding
them, we get

1
ra

+
1
rb

+
1
rc

+
1
rd

=
2(Sa + Sb + Sc + Sd)

3V
=

2
r
.

3.37. It is possible to cut pyramid MA1B1C1D1 into two tetrahedrons by plane
MA1C1 as well as by plane MB1D1, hence,

(1) VMB1C1D1 + VMA1B1D1 = VMA1B1C1 + VMA1C1D1 .

Making use of formulas from Problem 3.1 we get

VMB1C1D1 =
MB1

MB
· MC1

CM
· MD1

MD
VMBCD =

1
3
h

(
MA1

MA
· MB1

MB
· MC1

MC
· MD1

MD

)
MA

MA1
SBCD,

where h is the height of pyramid MABCD. Substituting similar expressions for
the volumes of all the other tetrahedrons into (1) we get the desired statement after
simplification.

3.38. Let r and r′ be the radii of the circumscribed and escribed balls, respec-
tively, S the area of the lateral face, s the area of the base, V the volume of the
pyramid. Then V = (3S+s)r

3 . We similarly prove that

V =
(3S − s)r′

3
.

Moreover,
s = (cos α + cos β + cos γ)S

(cf. Problem 2.13). Hence,

r

r′
=

3S − s

3S + s
=

3− cos α− cosβ − cos γ

3 + cos α + cos β + cos γ
.
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CHAPTER 4. SPHERES

§1. The length of the common tangent

4.1. Two balls of radii R and r are tangent to each other. A plane is tangent to
these balls at points A and B. Prove that AB = 2

√
Rr.

4.2. Three balls are tangent pairwise; a plane is tangent to these balls at points
A, B and C. Find the radii of these balls if the sides of triangle ABC are equal to
a, b and c.

4.3. Two balls of the same radius and two balls of another radius are placed so
that each ball is tangent to the three other ones and a given plane. Find the ratio
of the balls’ radii.

4.4. The radii of two nonintersecting balls are equal to R and r; the distance
between their centers is equal to a. Between what limits can the length of the
common tangent to these balls vary?

4.5. Two tangent spheres are inscribed in a dihedral angle of value 2α. Let A
be the tangent point of the first sphere with the first face and B the tangent point
of the second sphere with the second face. What is the ratio into which segment
AB is divided by the intersection points with these spheres?

§2. Tangents to the spheres

4.6. From an arbitrary point in space perpandiculars to planes of the faces
of the given cube are dropped. The obtained segments are diagonals of six other
cubes. Let us consider six spheres each of which is tangent to all the edges of the
corresponding cube. Prove that all these spheres have a common tangent line.

4.7. A sphere with diameter CE is tangent to plane ABC at point C; line AD
is tangent to the sphere. Prove that if point B lies on line DE, then AC = AB.

4.8. Given cube ABCDA1B1C1D1. A plane passing through vertex A and
tangent to the sphere inscribed in the cube intersects edges A1B1 and A1D1 at
points K and N , respectively. Find the value of the angle between planes AC1K
and AC1N .

4.9. Two equal triangles KLM and KLN have a common side KL, moreover,
∠KLM = ∠LKN = 60◦, KL = 1 and LM = KN = 6. Planes KLM and KLN
are perpendicular. Find the radius of the ball tangent to segments LM and KN
at their midpoints.

4.10. All the possible tangents to the given sphere are drawn from points A and
B. Prove that all the intersection points of these tangents distinct from A and B
lie in two planes.

4.11. The centers of three spheres whose radii are equal to 3, 4 and 6 lie in the
vertices of an equilateral triangle with side 11. How many planes simultaneously
tangent to all these spheres are there?

§3. Two intersecting circles lie on one sphere

4.12. a) Two circles not in one plane intersect at two distinct points, A and B.
Prove that there exists a unique sphere that contains these circles.
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b) Two circles not in one plane are tangent to line l at point P . Prove that there
exists a unique sphere containing these circles.

4.13. Given a truncated triangular pyramid, prove that if two of its lateral
faces are inscribed quadrilaterals, then the third lateral face is also an inscribed
quadrilateral.

4.14. All the faces of a convex polyhedron are inscribed polygons and all the
angles are trihedral ones. Prove that around this polyhedron a sphere can be
circumscribed.

4.15. Three spheres have a common chord. Through a point of this chord three
chords belonging to distinct spheres are drawn. Prove that the endpoints of these
three chords lie either on one sphere or in one plane.

4.16. Several circles are placed in space so that any two of them have a pair of
common points. Prove that either all these circles have two common points or all
of them belong to one sphere (or one plane).

4.17. Three circles in space are pairwise tangent to each other (i.e., they have
common points and common tangents at these points) and all the three tangent
points are distinct. Prove that either these circles belong to one sphere or to one
plane.

§4. Miscellaneous problems

4.18. Three points A, B and C on a sphere of radius R are pairwise connected
by (smaller) arcs of great circles. Through the midpoints of arcs ^ AB and ^ AC
one more great circle is drawn; it intersects the continuation of arc ^ BC at point
K. Find the length of arc ^ CK if the length of arc ^ BC is equal to l (l < πR).

4.19. Chord AB of a unit sphere is of length 1 and constitutes an angle of 60◦

with diameter CD of this sphere. It is known that AC =
√

2 and AC < BC. Find
the length of segment BD.

4.20. Given a sphere, a circle on it and a point P not on the sphere. Prove
that the second intersection points of the sphere with the lines that connect point
P with the points on the circle lie on one circle.

4.21. On a sphere of radius 2, we consider three pairwise tangent unit circles.
Find the radius of the smallest circle lying on the given sphere and tangent to all
the three given circles.

4.22. Introduce a coordinate system with the origin O at the center of the
Earth, axes Ox and Oy passing through the points of equator with longitude 0◦

and 90◦, respectively, and the Oz-axis passing through the North Pole. What are
the coordinates on the surface of the Earth with latitude ϕ and longitude ψ? (We
assume that the Earth is a ball of radius R; the latitude is negative in the southern
hemisphere.)

4.23. Consider all the points on the surface of earth whose geographic latitude
is equal to their longitude. Find the locus of the projections of these points to the
plane of the equator.

§5. The area of a spherical band and
the volume of a spherical segment

4.24. Two parallel planes the distance between which is equal to h cross a sphere
of radius R. Prove that the surface area of the part of the sphere confined between
them is equal to 2πRh.
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4.25. Let A be the vertex of a spherical segment, B the point on the circle of
its base. Prove that the surface area of this segment is equal to the area of the disk
of radius AB.

4.26. Let h be the height of the spherical segment (Fig. 32), R the radius of
the ball. Prove that the volume of the spherical segment is equal to 2πR2h

3 .

Figure 32 (4.26)

4.27. Let h be the height of the sperical segment and R the radius of the sphere,
see Fig. 33. Prove that the volume of the sperical segment is equal to 1

3πh2(2R−h).

Figure 33 (4.27)

4.28. Prove that the volume of the body obtained after rotation of a circular
segment about a diameter that does not intersect the segment is equal to 1

6πa2h,
where a is the length of the chord of this segment and h is the length of the
projection of this chord to the diameter.

4.29. A golden ring is of the form of the body bounded by the surface of a ball
and a cylinder (Fig. 34). How much gold should be added in order to increase k
times the diameter d and preserving the height h?

4.30. The center of sphere S1 belongs to sphere S2 and it is known that the
spheres intersect. Prove that the area of the part of the surface of S2 situated inside
S1 is equal to 1

4 of the surface area of S1.
4.31. The center of sphere α belongs to sphere β. The area of the part of the

surface of sphere β that lies inside α is equal to 1
5 of the surface area of α. Find

the ratio of the radii of these spheres.
4.32. A 20-hedron is circumscribed about a sphere of radius 10. Prove that

on the surface of the 20-hedron there are two points the distance between which is
greater than 21.

4.33. The length of a cube’s edge is equal to a. Find the areas of the parts into
which the planes of the cube’s faces split the sphere circumscribed about the cube.
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Figure 34 (4.29)

4.34. A ball of radius R is tangent to the edges of a regular tetrahedral angle
(see §9.1) all the plane angles of which are equal to 60◦. The surface of the ball
situated inside the angle consists of two curvilinear quadrilaterals. Find their areas.

4.35. Given a regular tetrahedron with edge 1, three of its edges coming out of
one vertex and a sphere tangent to these edges at their endpoints. Find the area
of the part of the sphere’s surface confined inside the tetrahedron.

4.36. On a sphere of radius 2, lie three pairwise tangent circles of radius
√

2.
The part of the sphere’s surface outside the circles is the union of two curvilinear
triangles. Find the areas of these triangles.

§6. The radical plane

Let line l passing through point O intersect a sphere S at points A and B. It is
easy to verify that the product of the lengths of segments OA and OB only depends
on O and S but does not depend on the choice of line l (for points that lie outside
the sphere the product is equal to the squared length of the tangent’s segment
drawn from point O to the tangent point). This quantity taken with “plus” sign
for points outside S and with “minus” sign for points inside S is called the degree
of point O relative to sphere S. It is easy to verify that the degree of point O is
equal to d2 −R2, where d is the distance from O to the center of the sphere and R
is the radius of the sphere.

4.37. Given two nonconcentric spheres, prove that the locus of the points whose
degrees relative to these spheres are equal is a plane.

This plane is called the radical plane of these two spheres.
4.38. Common tangents AB and CD are drawn to two spheres. Prove that

the lengths of projections of segments AC and BD to the line passing through the
centers of the spheres are equal.

4.39. Find the locus of the midpoints of common tangents to the two given
nonintersecting spheres.

4.40. Inside a convex polyhedron, several nonintersecting balls of distinct radii
are placed. Prove that this polyhedron can be cut into smaller convex polyhedra
each of which contains exactly one of the given balls.
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§7. The spherical geometry and solid angles

4.41. On a sphere, two intersecting circles S1 and S2 are given. Consider a cone
(or a cylinder) tangent to the given sphere along circle S1. Prove that circles S1

and S2 are perpendicular to each other if and only if the plane of S2 passes through
the vertex of this cone (or is parallel to the axis of the cylinder).

4.42. Find the area of a curvilinear triangle formed by the intersection of the
sphere of radius R with the trihedral angle whose dihedral angles are equal to α, β
and γ and the vertex coincides with the center of the sphere.

4.43. Let A1 and B1 be the midpoints of sides BC and AC of a spherical triangle
ABC. Prove that the area of spherical triangle A1B1C is smaller than a half area
of spherical triangle ABC.

4.44. A convex n-hedral angle cuts a spherical n-gon on the sphere of radius R
with center at the vertex of the angle. Prove that the area of the spherical n-gon
is equal to

R2(σ − (n− 2)π),

where σ is the sum of dihedral angles.
4.45. Two points, A and B, are fixed on a sphere. Find the locus of the third

vertices C of spherical triangles ABC for which ∠A + ∠B − ∠C is constant.
4.46. Two points A and B are fixed on a sphere. Find the locus of the third

vertices C of spherical triangles ABC of given area.
4.47. Three arcs of great circles 300◦ each lie on a sphere. Prove that at least

two of them have a common point.
4.48. Given several arcs of great circles on a sphere such that the sum of their

angular values is smaller than π. Prove that there exists a plane passing through
the center of the sphere and not intersecting either of these arcs.

Consider the unit sphere with the center in the vertex of a polyhedral angle (or
on an edge of the dihedral angle). The area of the part of the sphere’s surface
confined inside this angle is called the value of the solid angle of this polyhedral
(dihedral) angle.

4.49. a) Prove that the solid angle of the dihedral angle is equal to 2α, where α
is the value of the dihedral angle in radians.

b) Prove that the solid angle of a polyhedral angle is equal to σ−(n−2)π, where
σ is the sum of its dihedral angles.

4.50. Calculate the value of the solid angle of a cone with angle 2α at the vertex.
4.51. Prove that the difference between the sum of the solid angles of the

dihedral angles of a tetrahedron and the sum of the solid angles of its trihedral
angles is equal to 4π.

4.52. Prove that the difference between the sum of the solid angles of the
dihedral angles at the edges of a polyhedron and the sum of the solid angles of the
polyhedral angles at its vertices is equal to 2π(F − 2), where F is the number of
faces of the polyhedron.

Problems for independent study

4.53. Through point D, three lines intersecting a sphere at points A and A1, B
and B1, C and C1, respectively, are drawn. Prove that triangle A1B1C1 is similar to
the triangle with sides whose lengths measured in length units are equal to AB ·CD,
BC ·AD and AC ·BD measured in the corresponding area units.



44 CHAPTER 4. SPHERES

4.54. Consider the section of tetrahedron ABCD with the plane perpendicular
to the radius of the circumscribed sphere and with an endpoint at vertex D. Prove
that 6 points — vertices A, B, C and the intersection points of the plane with edges
DA, DB, DC — lie on one sphere.

4.55. Given cube ABCDA1B1C1D1 and the plane drawn through vertex A and
tangent to the ball inscribed in the cube. Let M and N be the intersection points
of this plane with lines A1B and A1D, respectively. Prove that line MN is tangent
to the ball inscribed in the cube.

4.56. Consider a pyramid. A ball of radius R is tangent to all the pyramid’s
lateral faces of and at the midpoints of the sides of its bases. The segment which
connects a vertex of the pyramid with the center of the ball is divided in halves
by its intersection point with the base of the pyramid. Find the volume of the
pyramid.

4.57. On a sphere, circles S0, S1, . . . , Sn are placed so that S1 is tangent to
Sn and S2, S2 is tangent to S1 and S3, . . . , Sn is tangent to Sn−1 and S1 and S0

is tangent to all the circles. Moreover, the radii of all these circles are equal. For
which n this is possible?

4.58. Let K be the midpoint of segment AA1 of cube ABCDA1B1C1D1, let
point L lie on edge BC so that segment KL is tangent to the ball inscribed in the
cube. What is the ratio in which the tangent point divides segment KL?

4.59. The planes of a cone’s base and its lateral surface are tangent from the
inside to n pairwise tangent balls of radius R; n balls of radius 2R are similarly
tangent to the lateral surface from the outside. Find the volume of the cone.

4.60. A plane intersects edges AB, BC, CD and DA of tetrahedron ABCD at
points K, L, M and N , respectively; P is an arbitrary point in space. Lines PK,
PL, PM and PN intersect the circles circumscribed about triangles PAB, PBC,
PCD and PDA for the second time at points K1, L1, M1 and N1, respectively.
Prove that points P , K1, L1, M1 and N1 lie on one sphere.

Solutions

4.1. First, let us prove that the length of the common tangent to the two tangent
circles of radii R and r is equal to 2

√
Rr. To this end, let us consider a right triangle

the endpoints of whose hypothenuse are the centers of circles and one of the legs is
parallel to the common tangents. Applying to this triangle the Pythagoras’ theorem
we get

x2 + (R− r)2 = (R + r)2,

where x is the length of the common tangent. Therefore, x = 2
√

Rr.
Now, by considering the section that passes through the centers of the given balls

and points A and B it is easy to verify that this formula holds in our case as well.
4.2. Let x, y and z be the radii of the balls. By Problem 4.1, a = 2

√
xy,

b = 2
√

yz and c = 2
√

xz. Therefore, ac
b = 2x, i.e., x = ac

2b . Similarly, y = ab
2c and

z = bc
2a .

4.3. Let A and C be the tangent points of the balls of radius R with the plane;
B and D be the tangent points of the balls of radius r with the plane. By Problem
4.1 AB = BC = CD = AD = 2

√
Rr; hence, ABCD is a rhombus; its diagonals are

equal to 2R and 2r. Therefore, R2 + r2 = 4Rr, i.e., R = (2±√3)r. Consequently,
the ratio of the large radius to the smaller one is equal to 2 +

√
3.



SOLUTIONS 45

Figure 35 (Sol. 4.3)

4.4. Let MN be the common tangent, A and B the centers of the balls. The
radii AM and BN are perpendicular to MN . Let C be the projection of point A
to the plane passing through point N and perpendicular to MN (Fig. 35). Since
NB = r and NC = R, it follows that BC can vary from |R−r| to R+r. Therefore,
the value of

MN2 = AC2 = AB2 −BC2

can vary from a2 − (R2 + r)2 to a2 − (R− r)2.
For the intersecting circles the upper limit of the length of MN is the same

whereas the lower one is equal to 0.
4.5. Let a and b be the radii of spheres, A1 and B1 be the other tangent

points with the faces of the angle. It is easy to compute the lengths of the sides of
trapezoid AA1BB1; they are AB1 = A1B = 2

√
ab (Problem 4.1), AA1 = 2a cos α

and BB1 = 2b cosα. The squared height of this trapezoid is equal to

4ab− (b− a)2 cos2 α

and the square of the diagonal is equal to

4ab− (b− a)2 cos2 α + (a + b)2 cos2 α = 4ab(1 + cos2 α).

If the sphere that passes through points A and A1 intersects segment AB at point
K, then

BK =
BA2

1

BA
=

2
√

ab√
1 + cos2 α

=
AB

1 + cos2 α
; AK =

AB cos2 α

1 + cos2 α
.

The lengths of the segments the intersection point with the second sphere divides
AB into are similarly found. As a result, we see that segment AB is divided in the
ratio cos2 α : sin2 α : cos2 α.

4.6. First, let us consider the given cube ABCDA1B1C1D1. The cone with axis
AC1 and generator AB is tangent to the sphere which is tangent to all the edges of
the given cube. Therefore, the cone with axis AB and generator AC1 is tangent to
the sphere which is tangent to all the edges of the cube with diagonal AB. These
arguments show that any of the four lines that pass through the given point parallel
to any of the diagonals of the given cube is tangent to all the obtained spheres.
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4.7. Since AC and AD are tangent to the given sphere, they are equal. There-
fore, point A belongs to the plane passing through the midpoint of segment CD and
perpendicular to it. Since ∠CDB = 90◦, this plane intersects plane ABC along
the line passing through the midpoint of segment BC and perpendicular to it.

4.8. First, let us prove the following auxiliary statement. Let two planes that
intersect along line AX be tangent to the sphere with center O at points F and G.
Then AOX is the bisector plane of the dihedral angle formed by planes AOF and
AOG. Indeed, points F and G are symmetric through plane AOX.

Let plane AKN be tangent at point P to the sphere inscribed in the cube and
let line AP intersect NK at point M . Let us apply the statement proved above
to the tangent planes passing through line NA. We see that AC1N is the bisector
plane of the dihedral angle formed by planes AC1D1 and AC1M . Similarly, AC1K
is the bisector plane of the dihedral angle formed by planes AC1M and AC1B1.
Therefore, the angle between planes AC1N and AC1K is equal to a half the dihedral
angle formed by the half planes AC1D1 and AC1B1. By considering the projection
to the plane perpendicular to AC1 we see that the dihedral angle formed by half
planes AC1D1 and AC1B1 is equal to 120◦.

4.9. Let O1 and O2 be the projections of the center O of the given ball to
planes KLM and KLN , respectively; let P and S be the midpoints of segments
LM and KN , respectively. Since OP = OS and PK = SL, it follows that OK =
OL. Therefore, the projections of points O1 and O2 to line KL coincide with the
midpoint Q of segment KL. Since planes KLM and KLN are perpendicular to
each other, OO1 = O2Q = QO1; hence, the squared radius of the sphere to be
found is equal to PO2

1 + OO2
1 = PO2

1 = QO2
1.

Applying the law of cosines to triangle KLM we get KM2 = 31. By the law of
sines 31 = (2R sin 60◦)2 = 3R2. Hence,

PO2
1 + QO2

1 = (R2 − PL2) + (R2 −QL2) =
62
3
− 9− 1

4
=

137
12

.

4.10. Let O be the center of the given sphere, r its radius; a and b the lengths
of tangents drawn from points A and B; let M be the intersection point of the
tangents drawn from A and B; letx be the length of the tangent drawn from M .
Then AM2 = (a±x)2, BM2 = (b±x)2 and OM2 = r2 +x2. Let us select numbers
α, β and γ so that the expression

αAM2 + βBM2 + γOM2

does not depend on x, i.e., so that α +β + γ = 0 and ±2αa± 2βb = 0. We see that
point M satisfies either the relation

bAM2 + aBM2 − (a + b)OM2 = d1

or the relation
bAM2 − aBM2 + (a− b)OM2 = d2.

Each of these relations determines a plane, cf. Problem 1.29.
4.11. Let us consider a plane tangent to all the three given spheres and let us

draw the plane through the center of the sphere of radius 3 parallel to the first
plane. The obtained plane is tangent to spheres of radii 4± 3 and 6± 3 concentric
to the spheres of radii 4 and 6.
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If the signs of 3 are the same, the tangency is the outer one, and if they are
distinct, the tangency is an inner one. It is also clear that for every plane tangent
to all the spheres the plane symmetric to it through the plane passing through the
centers of the spheres is also tangent to all the spheres.

In order to find out whether the plane passing through the given point and
tangent to the two given spheres exists, we can make use of the result of Problem
12.11. In all the cases, except for the inner tangency with spheres of radius 1 and
9, the tangent planes exist (see Fig. 36).

Figure 36 (Sol. 4.11)

Let us prove that there is no plane passing through point A and inner tangent
to the spheres of radii 1 and 9 with centers B and C, respectively. Let α be the
angle between line AB and the tangent from A to the sphere with center B; let β
be the angle between line AC and the tangent from A to the sphere with center C.
It suffices to verify that α + β > 60◦, i.e., cos(α + β) < 1

2 .

Since sin α = 1
11 and sin β = 9

11 , it follows that cos α =
√

120
11 and cos β =

√
40

11 .
Therefore, cos(α + β) = 40

√
3−9

121 . Thus, the inequality cos(α + β) < 1
2 is equivalent

to the inequality 80
√

3 < 139 and the latter inequality is verified by squaring.
As a result, we see that there are 3 pairs of tangent planes altogether.
4.12. Let O1 and O2 be the centers of the given circles; in heading a) M is the

midpoint of segment AB and in heading b) M = P .
Consider plane MO1O2. The intersection point of perpendiculars erected in this

plane from points O1 and O2 to lines MO1 and MO2 is the center of the sphere to
be found.

4.13. The circumscribed circles of two of the lateral faces have two common
points, the common vertices of these faces. Therefore, there exists the sphere that
contains both of these circles. The circumscribed circle of the third face is the
section of this sphere with the plane of the face.

4.14. Let us consider the vertex of the polyhedron and three more vertices — the
endpoints of the edges that go out of it. It is possible to draw a sphere through these
four points. Such spheres can be constructed for any vertex of the polyhedron and
therefore, it suffices to prove that these spheres coincide for neighbouring vertices.
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Let P and Q be some neighbouring vertices. Let us consider the circles circum-
scribed about two faces with common edge PQ. Point P and the endpoints of the
three edges that go out of it belong to at least one of these circles.

The same is true for point Q. It remains to notice that through two circles not
in one plane and with two common points and one can draw a sphere.

4.15. The product of the lengths of segments into which the intersection point
divides each of the chords is equal to the product of the lengths of segments into
which the common chord is divided by their intersection point, hence, these prod-
ucts are equal.

If segments AB and CD intersect at point O and AO · OB = CO · OD, then
points A, B, C and D lie on one circle. Therefore, the endpoints of the first and
second chords, as well as the endpoints of the second and third chords, lie on one
circle. The second chord belongs to both of these circles; hence, these circles lie on
one sphere.

4.16. If all the circles pass through some two points then all is proved. Therefore,
we may assume that there are three circles such that the third circle does not pass
through at least one of the intersection points of the first two circles. Let us prove
then that these three circles lie on one sphere (or plane).

By Problem 4.12 a) the first two circles lie on one sphere (or plane). The third
circle intersects the first circle at two points. These two points cannot coincide
with the two intersection points of the third circle with the second one, because
otherwise all the three circles would pass through two points. Hence, the third
circle has at least three common points with the sphere determined by the first two
circles. Therefore, the third circle belongs to this sphere.

Now, let us take some fourth circle. Its intersection points with the first circle
can, certainly, coincide with the intersection points with the second circle, but then
they cannot coincide with its intersection points with the third circle. Hence, the
fourth circle has at least three common points with the sphere determined by the
first two circles and, therefore, belongs to the sphere.

4.17. Let a sphere (or plane) α contain the first and the second circle, a sphere
(or plane) β the second and the third circle. Suppose that α and β do not coincide.
Then the second circle is the intersection curve. Moreover, the common point of the
first and the third circles also belongs to the intersection curve of α and β, i.e., to
the second circle, hence, all the three circles have a common point. Contradiction.

4.18. The plane that passes through the centers of the sphere and the midpoints
of arcs ^ AB and ^ AC passes also through the midpoints of chords AB and AC
and, therefore, is parallel to chord BC. Hence, the great circle passing through B
and C and the great circle passing through the midpoints of arcs ^ AB and ^ AC
intersect at points K and K1 such that KK1 is parallel to BC. Hence, the length
of arc ^ CK is equal to 1

2 (πR± l).
4.19. Let O be the center of the sphere. Take point E so that {CE} = {AB}.

Since ∠OCE = 60◦ and CE = 1 = OC, it follows that OE = 1. Point O is equidis-
tant from all the vertices of parallelogram ABEC, hence, ABEC is a rectangle and
the projection O1 of point O to the plane of this rectangle coincides with the rec-
tangle’s center, i.e., with the midpoint of segment BC. Segment OO1 is a midline
of triangle CBD, therefore,

BD = 2OO1 = 2

√
OC2 − BC2

4
= 2

√
1− AB2 + AC2

4
= 1.
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4.20. Let A and B be two points of the given circle, A1 and B1 be the other
intersection points of lines PA and PB with the sphere; l the tangent to the circle
circumscribed about triangle PAB at point P . Then

∠(l, AP ) = ∠(BP, AB) = ∠(A1B1, AP ),

i.e., A1B1 ‖ l. Let plane Π pass through point A1 parallel to the plane tangent at
P to the sphere that passes through the given point and P . All the desired points
lie in plane Π.

4.21. Let O be the center of the sphere; O1, O2 and O3 the centers of the given
circles; O4 the center of the circle to be found. By considering the section of the
sphere with plane OO1O2, it is easy to prove that OO1O2 is a equilateral triangle
with side

√
3. Line OO4 passes through the center of triangle O1O2O3 perpen-

dicularly to the triangle’s plane and, therefore, the distances from the vertices of
this triangle to line OO4 are equal to 1. Let K be the tangent point of the circles
with centers O1 and O4; let L be the base of the perpendicular dropped from O1

to OO4; let N be the base of the perpendicular dropped from K to O1L. Since

4O1KN ∼ 4OO1L, it follows that O1N = OL·O1K
OO1

=
√

2
3 and, therefore, the

radius O4K to be found is equal to LN = 1−
√

2
3 .

4.22. Let P = (x, y, z) be the given point on the surface of the Earth, P ′ its
projection to the equatorial plane. Then z = R sinϕ and OP ′ = R cos ϕ. Hence,

x = OP ′ cos ψ = R cos ϕ cos ψ; y = R cosϕ sin ψ.

Thus, P = (R cosϕ cosψ,R cosϕ sinψ,R sinϕ).
4.23. Introduce the same coordinate system as in Problem 4.22. If the latitude

and the longitude of point P are equal to ϕ, then P = (R cos2 ϕ, R cos ϕ sinϕ, R sinϕ).
The coordinates of the projection of this point to the equatorial plane are x =
R cos2 ϕ and y = R cos ϕ sin ϕ. It is easy to verify that

(x− R

2
)2 + y2 =

R2

4
,

i.e., the set to be found is the circle of radius 1
2R centered at ( 1

2R, 0).
4.24. First, let us consider the truncated cone whose lateral surface is tangent

to the ball of radius R and center O and let the tangent points divide the generators
of the cone in halves. Let us prove that the area of the lateral surface of the cone
is equal to 2πRh, where h is the height of the cone. Let AB be the generator
of the truncated cone; C the midpoint of segment AB; let L be the base of the
perpendicular dropped from C to the axis of the cone. The surface area of the
truncated cone is equal to 2πCL ·AB (this formula can be obtained by the passage
to the limit after we make use of the fact that the area of the trapezoid is equal
to the product of its midline by the height) and, since the angle between line
AB and the axis of the cone is equal to the angle between CO and CL, we have
AB : CO = h : CL, i.e., CL ·AB = CO · h = Rh.

Now the statement of the problem can be obtained by passage to the limit: let
us replace the considered part of the spherical surface by a figure that consists from
lateral surfaces of several truncated cones; when the heights of these cones tend to
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zero the surface area of this figure tends to the area of the considered part of the
sphere.

4.25. Let M be the center of the base of the spherical segment, h the height
of the segment, O the center of the ball, R the radius of the ball. Then AM =
h,MO = R− h and BM ⊥ AO. Hence,

AB2 −AM2 = BM2 = BO2 −OM2,

i.e.,
AB2 = h2 + R2 − (R− h)2 = 2Rh.

It remains to make use of the result of Problem 4.24.
4.26. The volume of the spherical sector is equal to 2

3S, where S is the area of
the spherical part of the sector’s surface. By Problem 4.24 S = 2πRh.

4.27. A spherical segment together with the corresponding cone whose vertex
is the center of the ball constitute a spherical sector. The volume of the spherical
sector is equal to 2πR2h

3 (Problem 4.26). The height of the cone is equal to R − h
and the squared radius of the cone’s base is equal to

R2 − (R− h)2 = 2Rh− h2;

consequently, the cone’s volume is equal to 1
3π(R − h)(2Rh− h2). By subtracting

from the volume of the spherical sector the volume of the cone we get the statement
desired.

4.28. Let AB be the chord of given segment, O the center of the disk, x the
distance from O to AB, R the radius of the disk. The volume of the body obtained
after rotation of the sector AOB about the diameter is equal to 1

3RS, where S
is the area of the surface obtained after rotation of arc ^ AB. By Problem 4.24
S = 2πRh. From the solution of the same problem it follows that the volume of
the body obtained after rotation of triangle AOB is equal to 2

3πx2h (to prove this,
one has to observe that the part of the surface of this body obtained after rotation
of segment AB is tangent to the sphere of radius x).

Thus, the desired volume is equal to

2πR2h

3
− 2πx2h

3
=

2π(x2 + a2/4)h
3

− 2πx2h

3
=

πa2h

6
.

4.29. By Problem 4.28 the volume of the ring is equal to 1
6πh3, i.e., it does not

depend on d.
4.30. Let O1 and O2 be the centers of spheres S1 and S2, let R1 and R2 be

their radii. Further, let A be the intersection point of the spheres, AH the height
of triangle O1AO2. Inside S1 lies a segment of the sphere S2 with height O1H.
Since O1O2 = AO2 = R2 and O1A = R1, it follows that 2O1H : R1 = R1 : R2, i.e.,
O1H = R2

1
2R2

. By Problem 4.24 the surface area of the considered segment is equal

to 2πR2·R2
1

2R2
= πR2

1.
4.31. If spheres α and β intersect, then the surface area of the part of sphere

β situated inside sphere α constitutes 1
4 of the surface area of α (Problem 4.30).

Therefore, sphere β is contained inside α; hence, the ratio of their radii is equal to√
5.
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4.32. Let us consider a polyhedron circumscribed about sphere of radius 10; let
the distance between any two points on the surface of this polyhedron not exceed
21 and let us prove that the number of the polyhedron’s faces exceeds 20. First of
all, observe that this polyhedron is situated inside the sphere of radius 11 whose
center coincides with the center O of the inscribed sphere. Indeed, if for a point
A from the surface of the polyhedron we have OA > 11, then let B be the other
intersection point of the polyhedron’s surface with line OA. Then

AB = AO + OB > 11 + 10 = 21

which is impossible.
For each face, its plane cuts off the sphere of radius 11 a “hat” of area 2πR(R−r),

where R = 11 and r = 10 (see Problem 4.24). Such “hats” cover the whole sphere
and, therefore, n · 2πR(R − r) ≥ 4πR2, where n is the number of faces. Hence,
n ≥ 2R

R−r = 22 > 20.
4.33. The planes of the cube’s faces divide the circumscribed sphere into 12

“bilaterals” (corresponding to the edges of the cube) and 6 curvilinear quadrilaterals
(corresponding to the faces of the cube). Let x be the area of the “bilateral”, y the
area of the “quadrilateral”. Since the radius of the circumscribed sphere is equal to
a
√

3
2 , the plane of the cube’s face cuts from the sphere a segment of height a(

√
3−1)
2 .

The surface area of this segment is equal to 1
2πa2(3 −√3). This segment consists

of four “bilaterals” and one “quadrilateral”, i.e.,

4x + y =
1
2
πa2(3−

√
3).

It is also clear that
12x + 6y = 4πR2 = 3πa2.

Solving the system of equations, we get

x =
πa2(2−√3)

4
; y =

πa2(
√

3− 1)
2

.

4.34. Let us consider a regular octahedron with edge 2R. The radius of the ball
tangent to all its edges is equal to R. The faces of the octahedron divide the ball
into 8 spherical segments (corresponding to faces) and 6 curvilinear quadrilaterals
(corresponding to vertices). Let x be the area of a segment and y the area of a
“quadrilateral”. The areas to be found are equal to y and 5y + 4x.

First, let us compute x. Since the distance from the center of octahedron to a
vertex is equal to

√
2R and the distance from the center of the octahedron’s face to

a vertex is equal to 2R√
3
, it follows that the distance from the center of octahedron to

its face is equal to R
√

2
3 . Therefore, the height of the considered spherical segment

is equal to (1−
√

2
3 )R and x = 2πR2(1−

√
2
3 ). It is also clear that 8x+6y = 4πR2.

Therefore, y = 2πR2

3 ·
(
4
√

2
3 − 3

)
and 5y + 4x = πR2

(
16
3

√
2
3 − 2

)
.

4.35. Let us consider a right tetrahedron with edge 2. The surface of the
sphere tangent to all its edges is divided by the tetrahedron’s surface into 4 equal
curvilinear triangles the area of each of which is the desired quantity and 4 equal
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segments. Let x be the distance from the center of a face to a vertex, y the distance
from the center of the tetrahedron to a face, and z the distance from the center of
a face to an edge of this face. It is easy to verify that x = 2√

3
and z = 1√

3
. Further

y = h
4 , where h =

√
4− x2 =

√
8
3 is the height of the tetrahedron, i.e., y = 1√

6
.

The radius r of the sphere is equal to

√
y2 + z2 =

√
1
6

+
1
3

=
1√
2
.

The height of each of the four segments is equal to r − y = 1√
2
− 1√

6
. Therefore,

the area in question is equal to

1
4

(
4π

(
1√
2

)2

− 4 · 2π
1√
2

(
1√
2
− 1√

6

))
= π

(
1√
3
− 1

2

)
.

4.36. Let us consider a cube with edge 2
√

2. A sphere of radius 2 whose center
coincides with that of the cube is tangent to all its edges and its intersections with
the faces are circles of radius

√
2. The surface of the sphere is divided by the surface

of the cube into 6 spherical segments and 8 curvilinear triangles. Let x be the area
of a spherical segment and y the area of a curvilinear triangle. Then the areas in
question are equal to y and 16π − y − 3x, respectively, where 16π is the surface
area of the sphere of radius 2. Since the height of each spherical segment is equal
to 2−√2, it follows that x = 4π(2−√2), consequently, y = 16π−6x

8 = π(3
√

2− 4)
and 16π − y − 3x = π(9

√
2− 4), respectively.

4.37. Let us introduce a coordinate system with the origin at the center of the
first sphere and Ox-axis passing through the center of the second sphere. Let the
distance between the centers of spheres be equal to a; the radii of the first and the
second spheres be equal to R and r. Then the degrees of point (x, y, z) relative to
the first and second spheres are equal to x2+y2+z2−R2 and (x−a)2+y2+z2−r2.
Hence, the locus to be found is given by the equation

x2 + y2 + z2 −R2 = (x− a)2 + y2 + z2 − r2,

i.e., x = a2+R2−r2

2a . This equation determines a plane perpendicular to the line that
connects the sphere’s centers.

4.38. Let M be the midpoint of segment AB; let l be the line that passes
through the centers of given spheres; P the intersection point of line l and the
radical plane of the given spheres. Since the tangents MA and MB drawn from
point M to the given spheres are equal, it follows that M belongs to the radical
plane of these spheres. Hence, the projection of point M to line l is point P , i.e.,
the projections of points A and B to line l are symmetric through P . Therefore,
under the symmetry through P the projection of segment AC to line l turns into
the projection of segment BD.

4.39. The midpoints of the common tangents to the two spheres lie in their
radical plane. Let O1 and O2 be the centers of given spheres, M the midpoint of
a common tangent, N the intersection point of the radical plane with line O1O2.
Let us consider the section of given spheres by planes passing through points O1
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Figure 37 (Sol. 4.39)

and O2 and draw outer and inner tangents to the circles obtained in the section
(Fig. 37). Let P and Q be the midpoints of these tangents. Let us prove that
NQ ≤ NM ≤ NP . Indeed,

NM2 = O1M
2 −O1N

2 =
x2

4
+ R2

1 −O1N
2,

where x is the length of the tangent and x takes its greatest and least values in the
cases of the inner and outer tangency accordingly (see the solution of Problem 4.4).
Thus the locus to be found is the annulus situated in the radical plane; the outer
radius of the annulus is NP and the inner one is NQ.

4.40. Let S1, . . . , Sn be the surfaces of the given balls. For every sphere Si

consider figure Mi that consists of points whose degree with respect to Si does not
exceed the degrees relative to all the other spheres. Let us prove that figure Mi is a
convex one. Indeed, let Mij be the figure consisting of points whose degree relative
to Si does not exceed the degree relative to Sj ; figure Mij is a half space consisting
of the points that lie on the same side of the radical plane of spheres Si and Sj as
the sphere Si. Figure Mi is the intersection of convex figures Mij ; hence, is convex
itself. Moreover, Mi contains sphere Si because each figure Mij contains sphere Si.
For any point in space some of its degrees relative to spheres S1, . . . , Sn is the least
one and, therefore, figures Mi cover the whole space. By considering the parts of
these figures that lie inside the initial polyhedron we get the desired partition.

4.41. Let A be the intersection point of the given circles and O the vertex of
the considered cone (or OA is the generator of the cylinder). Since line OA is
perpendicular to the tangent to circle S1 at point A, then circles S1 and S2 are
perpendicular if and only if OA is tangent to S2.

4.42. First, let us consider the spherical “bilateral” — the part of the sphere
confined inside the dihedral angle of value α whose edge passes through the center
of the sphere. The area of such a figure is proportional to α and for α = π it is
equal to 2πR2; hence, it is equal to 2αR2.

For the given trihedral angle, to every pair of the planes of the faces two “bilat-
erals” correspond. These “bilaterals” cover the given curvilinear triangle and the
triangle symmetric to it through the center of the sphere in 3 coats; they cover the
remaining part of the sphere in one coat. Hence, the sum of their areas is equal to
the surface area of the sphere multiplied by 4S, where S is the area of the triangle
in question. Hence,

S = R2(α + β + γ − π).
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4.43. Let us consider the set of endpoints of the arcs with the beginning at
point C; let these arcs be divided in halves by the great circle passing through
points A1 and B1. This set is the circle passing through points A, B and point C ′

symmetric to point C through the radius that divides arc ^ A1B1 in halves. A part
of this circle consisting of the endpoints of the arcs that intersect side A1B1 of the
curvilinear triangle A1B1C lies inside the curvilinear triangle ABC. In particular,
inside this triangle lies point C ′; hence,

SABC > SA1B1C + SA1B1C′ .

We compare the areas of the curvilinear triangles. It remains to observe that
SA1B1C = SA1B1C′ , because the corresponding triangles are equal.

4.44. Let us cut the n-hedral angle into n − 2 trihedral angles by drawing a
plane through one of its edges and edges not adjacent to it. For each of these
trihedral angles write the formula from Problem 4.42 and sum the formulas; we get
the desired statement.

4.45. Let M and N be the intersection points of the sphere with the line passing
through the center of circle S circumscribed about triangle ABC and perpendicular
to its plane. Let α = ∠MBC = ∠MCB, β = ∠MAC = ∠MCA and γ =
∠MAB = ∠MBA (we are talking about the spherical angles).

We can ascribe signs to these values in order to have β + γ = ∠A, α + γ = ∠B
and α + β = ∠C. Therefore, 2γ = ∠A + ∠B − ∠C. Each of the angles ∠A, ∠B
and ∠C is determined up to 2π; hence, the angle γ is determined up to π. The
equality γ = ∠MAB = ∠MBA determines two points M symmetric through the
plane OAB, where O is the center of the sphere. If instead of γ we take γ + π,
then instead of M we get point N , i.e., circle S does not vary. To the locus to be
found not all the points of the circle’s belong but only one of the arcs determined
by points A and B; which exactly arc is clear by looking at the sign of the number
∠A + ∠B − ∠C. Thus, the locus consists of two arcs of the circles symmetric
through plane OAB.

Figure 38 (Sol. 4.46)

4.46. The area of spherical triangle ABC is determined by the value ∠A+∠B+
∠C (see Problem 4.42). Let points A′ and B′ be diametrially opposite to points A
and B. The angles of spherical triangles ABC and A′B′C ′ are related as follows
(see Fig. 38): ∠A′ = π−∠A, ∠B′ = π−∠B and the angles at vertex C are equal.
Hence,

∠A′ + ∠B′ − ∠C = 2π − (∠A + ∠B + ∠C)
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is constant. The desired locus consists of two arcs of the circles passing through
points A′ and B′ (cf. Problem 4.45).

4.47. Suppose that given arcs a, b and c do not intersect. Let Ca and Cb be
intersection points of great circles containing arcs a and b. Since arc a is greater
than 180◦, it contains one of these points, for example Ca. Then arc b contains point
Cb. Let us also consider the intersection points Ab and Ac, Ba and Bc of the other
pairs of great circles (Ab belongs to arc b, Ac to arc c, Ba to arc a and Bc to arc c).
Points Bc and Cb lie in the plane of arc a but do not belong to arc a itself. Hence,
∠BcOCb < 60◦, where O is the center of the sphere. Similarly, ∠AcOCa < 60◦

and AbOBa < 60◦. Therefore, ∠AcOBc = ∠AbOBa < 60◦ and AcOCb = 180◦ −
∠AcOCa > 120◦, i.e., ∠AcOBc + ∠BcOCb < ∠AcOCb. Contradiction.

4.48. Let O be the center of the sphere. To every plane passing through O
we may assign a pair of points of the sphere — the intersection points with the
sphere of the perpendicular to this plane passing through O. It is easy to verify
that under this map to planes passing through point A the points of the great circle
perpendicular to line OA correspond. Hence, to the planes that intersect arc ^ AB
there correspond the points from the part of the sphere confined between the two
planes passing through point O perpendicularly to lines OA and OB, respectively
(Fig. 39).

Figure 39 (Sol. 4.48)

The area of this figure is equal to (α
π )S, where α is the angle value of arc ^ AB

and S is the area of the sphere. Therefore, if the sum of the angle values of the arcs
is smaller than π, then the area of the figure consisting of the points of the sphere
corresponding to the planes that intersect these arcs is smaller than S.

4.49. a) The solid angle is proportional to the value of the dihedral angle and
the solid angle of the trihedral angle of value π is equal to 2π.

b) See Problem 4.44.
4.50. Let O be the vertex of the cone and OH its height. Let us construct

a sphere of radius 1 centered at O and consider its section by the plane passing
through line OH. Let A and B be the points of the cone that lie on the sphere;
M the intersection point of ray OH with the sphere (Fig. 40). Then HM =
OM − OH = 1 − cos α. The solid angle of the cone is equal to the surface of the
spherical segment cut by the base of the cone. By Problem 4.24 this area is equal
to 2πRh = 2π(1− cosα).

4.51. The solid angle of the trihedral angle is equal to the sum of its dihedral
angles minus π (see Problem 4.42) and, therefore, the sum of the solid angles of
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Figure 40 (Sol. 4.50)

the trihedral angles of the tetrahedron is equal to the doubled sum of its dihedral
angles minus 4π. The doubled sum of the dihedral angles of the tetrahedron is
equal to the sum of their solid angles.

4.52. The solid angle at the i-th vertex of the polyhedron is equal to σi−(ni−2)π,
where σi is the sum of the dihedral angles at the edges that go out of the vertex
and ni is the number of these edges (cf. Problem 4.44). Since each edge goes out
exactly from two vertices, it follows that

∑
ni = 2E, where E is the number of

edges. Therefore, the sum of the solid angles of the polyhedral angles is equal to
2σ − 2(E − V )π, where σ is the sum of dihedral angles and V is the number of
vertices. It remains to notice that E − V = F − 2 (Problem 8.14).

CHAPTER 5. TRIHEDRAL AND POLYHEDRAL ANGLES

CHEVA’S AND MENELAUS’S

THEOREMS FOR TRIHEDRAL ANGLES

§1. The polar trihedral angle

5.1. Given a trihedral angle with plane angles α, β, γ and the dihedral angles A,
B and C, respectively, opposite to them, prove that there exists a trihedral angle
with plane angles π − A, π − B and π − C and dihedral angles π − α, π − β and
π − γ.

5.2. Prove that if dihedral angles of a trihedral angle are right ones, then its
plane angles are also right ones.

5.3. Prove that trihedral angles are equal if the corresponding dihedral angles
are equal.

§2. Inequalities with trihedral angles

5.4. Prove that the sum of two plane angles of a trihedral angle is greater than
the third plane angle.

5.5. Prove that the sum of plane angles of a trihedral angle is smaller than 2π
and the sum of its dihedral angles is greater than π.

5.6. A ray SC ′ lies inside the trihedral angle SABC with vertex S. Prove that
the sum of plane angles of a trihedral angle SABC is greater than the sum of plane
angles of the trihedral angle SABC ′.
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§3. Laws of sines and cosines for trihedral angles

5.7. Let α, β and γ be plane angles of a trihedral angle, A, B and C the dihedral
angles opposite to them. Prove that

(The law of sines for a trihedral angle) sin α : sin A = sinβ : sin B = sin γ : sin C.

5.8. Let α, β and γ be plane angles of a trihedral angle A, B and C the dihedral
angles opposite to them.

a) Prove that
(The first law of cosines for a trihedral angle)

cos α = cos β cos γ + sin β sin γ cos A.

b) Prove that
(The second law of cosines for a trihedral angle)

cos A = − cos B cos C + sin B sin C cos α.

5.9. Plane angles of a trihedral angle are equal to α, β and γ; the edges opposite
to them form angles a, b and c with the planes of the faces. Prove that

sinα sin a = sinβ sin b = sin γ sin c.

5.10. a) Prove that if all the plane angles of a trihedral angle are obtuse ones,
then all its dihedral angles are also obtuse ones.

b) Prove that if all the dihedral angles of a trihedral angle are acute ones, then
all its plane angles are also acute ones.

§4. Miscellaneous problems

5.11. Prove that in an arbitrary trihedral angle the bisectors of two plane angles
and the angle adjacent to the third plane angle lie in one plane.

5.12. Prove that the pairwise angles between the bisectors of plane angles of a
trihedral angle are either simultaneously acute, or simultaneously obtuse, or simul-
taneously right ones.

5.13. a) A sphere tangent to faces SBC, SCA and SAB at points A1, B1 and
C1 is inscribed in trihedral angle SABC. Express the value of the angle ASB1 in
terms of the plane angles of the given trihedral angle.

b) The inscribed and escribed spheres of tetrahedron ABCD are tangent to the
face ABC at points P and P ′, respectively. Prove that lines AP and AP ′ are
symmetric through the bisector of angle BAC.

5.14. The plane angles of a trihedral angle are not right ones. Through the
vertices of tetrahedral angle planes perpendicular to the opposite faces are drawn.
Prove that these planes intersect along one line.

5.15. a) The plane angles of a trihedral angle are not right ones. In the planes
of the trihedral angle’s faces there are drawn lines perpendicular to the respective
opposite edges. Prove that all three lines are parallel to one plane.

b) Two trihedral angles with common vertex S are placed so that the edges of
the second angle lie in the planes of the corresponding faces of the first angle and
are perpendicular to its opposite edges. Find the plane angles of the first trihedral
angle.
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§5. Polyhedral angles

5.16. a) Prove that for any convex tetrahedral angle there exists a section which
is a parallelogram and all such sections are parallel to each other.

b) Prove that there exists a section of a convex four-hedral angle with equal
plane angles which is a rhombus.

5.17. Prove that any plane angle of a polyhedral angle is smaller than the sum
of all the other plane angles.

5.18. One of two convex polyhedral angles with common vertex lies inside the
other one. Prove that the sum of the plane angles of the inner polyhedral angle is
smaller than the sum of the plane angles of the outer polyhedral angle.

5.19. a) Prove that the sum of dihedral angles of a convex n-hedral angle is
greater than (n− 2)π.

b) Prove that the sum of plane angles of a convex n-hedral angle is smaller than
2π.

5.20. The sum of plane angles of a convex n-hedral angle is equal to the sum of
its dihedral angles. Prove that n = 3.

5.21. A sphere is inscribed in a convex four-hedral angle. Prove that the sums
of its opposite plane angles are equal.

5.22. Prove that a convex four-hedral angle can be inscribed in a cone if and
only if the sums of its opposite dihedral angles are equal.

§6. Ceva’s and Menelaus’s theorems for trihedral angles

Before we pass to Ceva’s and Menelaus’s theorems for trihedral angles we have to
prove (and formulate) Ceva’s and Menelaus’s theorems for triangles. To formulate
these theorems, we need the notion of the ratio of oriented segments that lie on the
same line.

Let points A, B, C and D lie on one line. By the ratio of oriented segments
AB and CD we mean the number AB

CD
whose absolute value is equal to AB

CD and
which is positive if vectors {AB} and {CD} are similarly directed and negative if
the directions of these vectors are opposite.

5.23. On sides AB, BC and CA of triangle ABC (or on their extensions), points
C1, A1 and B1,respectively, are taken.

a) Prove that points A1, B1 and C1 lie on one line if and only if

(Menelaus’s theorem)
A1B

A1C
· B1C

B1A
· C1A

C1B
= 1.

b) Prove that if lines AA1, BB1 and CC1 are not pairwise parallel, then they
intersect at one point if and only if

(Ceva’s theorem)
A1B

A1C
· B1C

B1A
· C1A

C1B
= −1.

Let rays l, m and n with a common origin lie in one plane. In this plane, select a
positive direction of rotation. In this section we will denote by sin(l,m)

sin(n,m) the ratio of
sines of the angles through which one has to rotate in the positive direction rays l
and n in order for them to coincide with ray m. Clearly, this ratio does not depend
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on the choice of the positive direction of the rotation in plane: as we vary this
direction both the numerator and the denominator adjust accordingly.

Let half-planes α, β and γ have a common boundary. Select one of the positive
directions of rotation about this line (the boundary) as the positive one. In this
section we will denote by sin(α,β)

sin(γ,β) the ratio of the sines of the angles through which
one has to turn in the positive direction the half-planes α and γ in order for them
to coincide with β. Clearly, this quantity does not depend on the choice of the
positive direction of rotation.

5.24. Given a trihedral angle with vertex S and edges a, b and c. Rays α, β
and γ starting from S lie in the planes of the faces opposite to edges a, b and c,
respectively.

a) Prove that rays α, β and γ lie in one plane if and only if

(First Menelaus’s theorem)
sin(a, γ)
sin(b, γ)

· sin(b, α)
sin(c, α)

· sin(c, β)
sin(a, β)

= 1.

b) Prove that planes passing through pairs of rays a and α, b and β, c and γ
intersect along one line if and only if

(First Ceva’s theorem)
sin(a, γ)
sin(b, γ)

· sin(b, α)
sin(c, α)

· sin(c, β)
sin(a, β)

= −1.

5.25. Given are a trihedral angle with vertex S and edges a, b, c and rays α,
β and γ, respectivly, starting from S and lying in the planes of the faces opposite
to these edges. Let l and m be two rays with a common vertex. Denote by lm the
plane determined by these rays.

a) Prove that

sin(ab, aα)
sin(ac, aα)

· sin(bc, bβ)
sin(ba, bβ)

· sin(ca, cγ)
sin(cb, cγ)

=
sin(b, α)
sin(c, α)

· sin(c, β)
sin(a, β)

· sin(a, γ)
sin(b, γ)

.

b) Prove that rays α, β and γ lie in one plane if and only if

(Second Menelaus’s theorem)
sin(ab, aα)
sin(ac, aα)

· sin(bc, bβ)
sin(ba, bβ)

· sin(ca, cγ)
sin(cb, cγ)

= 1.

c) Prove that the planes passing through pairs of rays a and α, b and β, c and
γ intersect along one line if and only if

(Second Ceva’s theorem)
sin(ab, aα)
sin(ac, aα)

· sin(bc, bβ)
sin(ba, bβ)

· sin(ca, cγ)
sin(cb, cγ)

= −1.

5.26. In trihedral angle SABC, a sphere tangent to faces SBC, SCA and SAB
at points A1, B1 and C1, respectively, is inscribed. Prove that planes SAA1, SBB1

and SCC1 intersect along one line.
5.27. Given a trihedral angle with vertex S and edges a, b and c. R are placed in

planes of the faces opposite to edges a, b and c. Let rays α′, β′ and γ′ be symmetric
to rays α, β and γ, respectively, through the bisectors of the corresponding faces.

a) Prove that rays α, β and γ lie in one plane if and only if rays α′, β′ and γ′

lie in one plane.
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b) Prove that the planes passing through pairs of rays a and α, b and β, c and γ
intersect along one line if and only if the planes passing through the pairs of rays
a and α′, b and β′, c and γ′ intersect along one line.

5.28. Given a trihedral angle with vertex S and edges a, b and c. Lines α, β
and γ lie in the planes of the faces opposite to edges a, b and c, respectively. Let α′

be the line along which the plane symmetric to the plane aα through the bisector
plane of the dihedral angle at edge a intersects the plane of face bc; lines β′ and γ′

are similarly defined.
a) Prove that lines α, β and γ lie in one plane if and only if the lines α′, β′ and

γ′ lie in one plane.
b) Prove that the planes passing through pairs of lines a and α, b and β, c and γ

intersect along one line if and only if the planes passing through the pairs of lines
a and α′, b and β′, c and γ′ intersect along one line.

5.29. Given tetrahedron A1A2A3A4 and a point P . For every edge AiAj con-
sider the plane symmetric to plane PAiAj through the bisector plane of the dihedral
angle at edge AiAj . Prove that either all these 6 planes intersect at one point or
all of them are parallel to one line.

5.30. Given trihedral angle SABC such that ∠ASB = ∠ASC = 90◦. Planes
πb and πc pass through edges SB and SC and planes π′b and π′c are symmetric to
πb and πc, respectively, through the bisector planes of the dihedral angles at these
edges. Prove that the projections of the intersection lines of planes πb and πc, π′b
and π′c to plane BSC are symmetric through the bisector of angle ∠BSC.

5.31. Let the Monge’s point of tetrahedron ABCD (see Problem 7.32) lie in the
plane of face ABC. Prove that through point D planes pass in which there lie:

a) intersection points of the heights of faces DAB, DBC and DAC;
b) the centers of the circumscribed circles of faces DAB, DBC and DAC.

Problems for independent study

5.32. A sphere with center O is inscribed in the trihedral angle with vertex S.
Prove that the plane passing through the three tangent points is perpendicular to
line OS.

5.33. Given trihedral angle SABC with vertex S; the dihedral angles ∠A, ∠B
and ∠C at edges SA, SB and SC; the plane angles α, β and γ opposite to them.

a) The bisector plane of the dihedral angle at edge SA intersects face SBC along
ray SA1. Prove that

sin A1SB : sin A1SC = sin ASB : sin ASC.

b) The plane passing through edge SA perpendicularly to face SBC intersects
this face along ray SA1. Prove that

sin A1SB : sin A1SC = (sin β cosC) : (sin γ cosB).

We assume here that all the plane angles of the given trihedral angle are acute
ones; consider on your own the case when among the plane angles of the trihedral
angle obtuse angles are encountered.

5.34. Let a, b and c be the unit vectors directed along the edges of trihedral
angle SABC.
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a) Prove that the planes passing through the edges of the trihedral angle and
the bisectors of the opposite faces intersect along one line and this line is given by
vector a + b + c.

b) Prove that the bisector planes of the dihedral angles of the trihedral angle
intersect along one line and this line is given by the vector

a sin α + b sin β + c sin γ.

c) Prove that the planes passing through the edges of the trihedral angle per-
pendicularly to their opposite faces intersect along one line and this line is given
by the vector

a sin α cos B cos C + b sinβ cos A cosC + c sin γ cosA cos B.

d) Prove that the planes passing through the bisectors of the faces perpendicu-
larly to the planes of these faces intersect along one line and this line is determined
by the vector

[a,b] + [b, c] + [c,a]

(Recall the definition of the vector product [a,b] of vectors a and b.)
5.35. In a convex tetrahedral angle the sums of the opposite plane angles are

equal. Prove that a sphere can be inscribed in this tetrahedral angle.
5.36. Projections SA′, SB′ and SC ′ of edges SA, SB and SC of a trihedral

angle to the faces opposite to them form the edges of a new trihedral angle. Prove
that the bisector planes of the new angle are SAA′, SBB′ and SCC ′.

Solutions

5.1. Inside the given trihedral angle with vertex S take an arbitrary point S′ and
from it drop perpendiculars S′A′, S′B′ and S′C ′ to faces SBC, SAC and SAB,
respectively. Clearly, the plane angles of trihedral angle S′A′B′C ′ complement the
dihedral angles of trihedral angle SABC to π. To complete the proof it remains to
notice that edges SA, SB and SC are perpendicular to faces S′B′C ′, S′A′C ′ and
S′A′B′, respectively.

Angle S′A′B′C ′ is called the complementary or polar one to angle SABC.
5.2. Consider the trihedral angle polar to the given one (see Problem 5.1). Its

plane angles are right ones; hence, its dihedral angles are also right ones. Therefore,
the plane angles of the initial trihedral angle are also right ones.

5.3. The angles polar to the given trihedral angles have equal plane angles;
hence, they are equal themselves.

5.4. Consider trihedral angle SABC with vertex S. The inequality ∠ASC <
∠ASB + ∠BSC is obvious if ∠ASC ≤ ∠ASB. Therefore, let us assume that
∠ASC ≥ ∠ASB. Then, inside face ASC, we can select a point B′ so that ∠ASB′ =
∠ASB and SB′ = SB, i.e., ∠ASB = ∠ASB′. We may assume that point C lies
in plane ABB′. Since

AB′ + B′C = AC < AB + BC = A′B + BC,

it follows that B′C < BC. Hence, ∠B′SC < ∠BSC. It remains to notice that
∠B′SC = ∠ASC − ∠ASB.
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5.5. First solution. On the edges of the trihedral angle draw equal segments
SA, SB and SC starting from vertex S. Let O be the projection of S to plane ABC.
The isosceles triangles ASB and AOB have a common base AB and AS > AO.
Hence, ∠ASB < ∠AOB. By writing similar inequalities for the two other angles
and taking their sum we get

∠ASB + ∠BSC + ∠CSA < ∠AOB + ∠BOC + ∠COA ≤ 2π.

The latter inequality becomes a strict one only if point O lies outside triangle ABC.
To prove the second part, it suffices to apply the already proved inequality to the

angle polar to the given one (see Problem 5.1). Indeed, if α, β and γ are dihedral
angles of the given trihedral angle, then

(π − α) + (π − β)(π − γ) < 2π,

i.e., α + β + γ > π.
Second solution. Let point A′ lie on the extension of edge SA beyond vertex

S. By Problem 5.4

∠A′SB + ∠A′SC > ∠BSC, i.e., (π − ∠ASB) + (π − ∠ASC) > ∠BSC;

hence, 2π > ∠ASB + ∠BSC + ∠CSA.
Proof of the second part of the problem is performed as in the first solution.
5.6. Let K be the intersection point of face SCB with line AC ′. By Problem

5.4 we have ∠C ′SK + ∠KSB > ∠C ′SB and

∠CSA + ∠CSK > ∠ASK = ∠ASC ′ + ∠C ′SK.

Adding these inequalities and taking into account that ∠CSK + ∠KSB = ∠CSB
we get the desired statement.

5.7. On edge SA of trihedral angle SABC, take an arbitrary point M . Let M ′

be the projection of M to plane SBC, let P and Q be the projections of M to lines
SB and SC. By the theorem on three perpendiculars M ′P ⊥ SB and M ′Q ⊥ SC.
If SM = a, then MQ = a sin β and

MM ′ = MQ sin C = a sinβ sin C.

Similarly,
MM ′ = MP sin B = a sin γ sin B.

Therefore,
sin β : sin B = sin γ : sinC.

The second equality is similarly proved.
5.8. a) First solution. On segment SA take a point, M , and at it erect

perpendiculars PM and QM to edge SA in planes SAB and SAC, respectively
(points P and Q lie on lines SB and SC). By expressing the length of the side PQ
in triangles PQM and PQS with the help of the law of cosines and equating these
expressions we get the desired equality after simplifications.
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Second solution. Let a, b and c be unit vectors directed along edges SA, SB
and SC, respectively. Vector b lying in plane SAB can be represented in the form

b = a cos γ + u, where u ⊥ a and |u| = sin γ.

Similarly,
c = a cosβ + v, where v ⊥ a and |v| = sin β.

It is also clear that the angle between vectors u and v is equal to ∠A.
On the one hand, the inner product of vectors b and c is equal to cos α. On the

other hand, the product is equal to

(a cos γ + u, a cosβ + v) = cos β cos γ + sin β sin γ cos∠A.

b) To prove it, it suffices apply the first law of cosines to the angle polar to the
given trihedral angle (cf. Problem 5.1).

5.9. Let us draw three planes parallel to the faces of the trihedral angle at
distance 1 from them and intersecting the edges. Together with the planes of the
faces they constitute a parallelepiped all the heights of which are equal to 1 and,
therefore, the areas of all its faces are equal. Now, notice that the lengths of the
edges of this parallelepiped are equal to 1

sin a , 1
sin b and 1

sin c . Therefore, the areas
of its faces are equal to

sin α

sin b sin c
,

sin β

sin a sin c
, and

sin γ

sin a sin b
.

By equating these expressions we get the desired statement.
5.10. a) By the first theorem on cosines for a trihedral angle (Problem 5.8 a))

sin β sin γ cosA = cos α− cosβ cos γ.

By the hypothesis cos α < 0 and cos β cos γ > 0; hence, cos A < 0.
b) To prove it, it suffices to make use of the second theorem on cosines (Problem

5.8 b)).
5.11. First solution. On the edges of the trihedral angle, draw equal segments

SA, SB and SC beginning from vertex S. The bisectors of angles ASB and BSC
pass through the midpoints of segments AB and BC, respectively, and the bisector
of the angle adjacent to angle CSA is parallel to CA.

Second solution. On the segments of the trihedral angle draw equal vectors
a, b and c beginning from vertex S. The bisectors of angles ASB and BSC are
parallel to vectors a + b and b + c and the bisector of the angle adjacent to angle
CSA is parallel to the vector c− a. It remains to notice that

(a + b) + (c− a) = b + c.

5.12. On the edges of the trihedral angle draw unit vectors a, b and c starting
from its vertex. Vectors a+b, b+ c and a+ c determine the bisectors of the plane
angles. It remains to verify that all the pairwise inner products of these sums are of
the same sign. It is easy to see that the inner product of any pair of these vectors
is equal to

1 + (a,b) + (b, c) + (c,a).
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5.13. a) Let α, β and γ be the plane angles of trihedral angle SABC; let
x = ∠ASB1 = ∠ASC1, y = ∠BSA1 = ∠BSC1 and z = ∠CSA1 = ∠CSB1. Then

x + y = ∠ASC1 + ∠BSC1 = ∠ASB = γ, y + z = α, z + x = β.

Hence,

x =
1
2
(β + γ − α).

b) Let point D′ lie on the extension of edge AD beyond point A. Then the
escribed sphere of the tetrahedron tangent to face ABC is inscribed in trihedral
angle ABCD′ with vertex A. From the solution of heading a) it follows that

∠BAP =
∠BAC + ∠BAD − ∠CAD

2
;

∠CAP ′ =
∠BAC + ∠CAD′ − ∠BAD′

2
.

Since ∠BAD′ = 180◦−∠BAD and ∠CAD′ = 180◦−∠CAD, we see that ∠BAP =
∠CAP ′; hence, lines AP and AP ′ are symmetric through the bisector of angle BAC.

5.14. Let us select points A, B and C on the edges of the trihedral angle with
vertex S so that SA ⊥ ABC (the plane that passes through point A of one edge
perpendicularly to the edge intersects the other two edges because the plane angles
are not right ones). Let AA1, BB1 and CC1 be the heights of triangle ABC. It
suffices to verify that SAA1, SBB1 and SCC1 are the planes spoken about in the
formulation of the problem.

Since BC ⊥ AS and BC ⊥ AA1, it follows that BC ⊥ SAA1; hence, planes SBC
and SAA1 are perpendicular to each other. Since BB1 ⊥ SA and BB1 ⊥ AS, we
see that BB1 ⊥ SAC and, therefore, planes SBB1 and SAC are perpendicular.
We similarly prove that planes SCC1 and SBC are perpendicular to each other.

5.15. a) Let a, b and c be vectors directed along the edges SA, SB and SC of
the trihedral angle. The line lying in plane SBC and perpendicular to edge SA is
parallel to vector (a,b)c− (a, c)b. Similarly, two other lines are parallel to vectors
(b, c)a− (b,a)c and (c,a)b− (c,b)a. Since the sum of these vectors is equal to 0,
they are parallel to one plane.

b) Let us direct vectors a, b and c along the edges of the first trihedral angle
SABC. Let (b, c) = α, (a, c) = β and (a,b) = γ. If the edge of the second angle,
which lies in plane SAB, is parallel to vector λa + µa, then (λa + µb, c) = 0, i.e.,
λβ + µα = 0. It is easy to verify that if at least one of the numbers α and β is
nonzero, then this edge is parallel to vector αa − βb (the case when one of these
numbers is equal to zero should be considered separately).

Therefore, if not more than one of the numbers α, β and γ is equal to zero, then
the edges of the second dihedral angle are parallel to vectors γc− βb, αa− γc and
βb − αa, and since the sum of these vectors is equal to zero, the edges should lie
in one plane.

If, for example, α 6= 0 and β = γ = 0, then two edges should be parallel to vector
a. There remains a unique possibility: all the numbers α, β and γ are equal to 0,
i.e., the plane angles of the first trihedral angle are right ones.

5.16. a) Let A, B, C and D be (?)the points on the edges of a convex four-
hedral angle with vertex S. Lines AB and CD are parallel if and only if they are



SOLUTIONS 65

parallel to line l1 along which planes SAB and SCD intersect. Lines BC and AD
are parallel if and only if they are parallel to line l2 along which planes SCB and
SAD intersect. Hence, the section is a parallelogram if and only if it is parallel to
lines l1 and l2.

Remark. For a non-convex four-hedral angle the section by the plane parallel
to lines l1 and l2 is not a bounded figure.

b) Points A and C on the edges of a four-hedral angle can be selected so that
SA = SC. Let P be the intersection point of segment AC with plane SBD. Points
B and D can be selected so that SB = SD and segment BD passes through point P .
Since the plane angles of the given four-hedral angle are equal, the triangles SAB,
SAD, SCB and SCD are equal. Therefore, quadrilateral ABCD is a rhombus.

5.17. Consider a polyhedral angle OA1 . . . An with vertex O. As follows from
the result of Problem 5.4

∠A1OA2 < ∠A2OA3 + ∠A1OA3, ∠A1OA3 < ∠A3OA4 + ∠A1OA4, . . .

. . . , ∠A1OAn−1 < ∠An−1OAn + ∠AnOA1.

Hence,

∠A1OA2 < ∠A2OA3 + ∠A3OA4 + · · ·+ ∠An−1OAn + ∠AnOA1.

5.18. Let polyhedral angle OA1 . . . An lie inside polyhedral angle OB1 . . . Bm.
We may assume that A1, . . . , An and B1, . . . , Bm are the intersection points of
their edges with the unit sphere.

Figure 41 (Sol. 5.18)

Then the vertices of plane angles of the given polyhedral angles are equal to the
lengths of the corresponding arcs of the sphere. Thus, instead of polyhedral angles,
we will consider “spherical polygons” A1 . . . An and B1 . . . Bm. Let P1, . . . , Pn be
the points of intersection of “rays” A1A2, . . . , AnA1 with the sides of spherical
polygon B1 . . . Bm (Fig. 41). By Problem 5.17

^ AiAi+1+ ^ Ai+1Pi =^ AiPi <^ AiPi−1 + l(Pi−1, Pi),

where l(Pi−1, Pi) is the length of the part of the “perimeter” of polygon B1 . . . Bm

confined inside the “angle” Pi−1AiPi. By adding up these inequalities we get the
desired statement.
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5.19. a) Let us cut the n-hedral angle SA1 . . . An with vertex S into n − 2
trihedral angles by planes SA1A3, SA1A4, . . . , SA1An−1. The sum of dihedral
angles of the n-hedral angle is equal to the sum of dihedral angles of these trihedral
angles and the sum of dihedral angles of any trihedral angle is greater than π
(Problem 5.5).

Figure 42 (Sol. 5.19)

b) Let us prove this statement by induction on n. For n = 3 it is true (cf.
Problem 5.5). Suppose it is true for any convex (n − 1)-hedral angle; let us prove
then that it holds for a convex n-hedral angle SA1 . . . An with vertex S. Planes
SA1A2 and SAn−1An have a common point, S, hence, they intersect along a line
l which does not lie in plane SA1An. On line l, take point B so that B and the
polyhedral angle SA1 . . . An lie on different sides of the plane SA1An (Fig. 42).
Consider (n − 1)-hedral angle SBA2A3 . . . An−1. By the inductive hypothesis the
sum of its plane angles is smaller than 2π. By Problem 5.4

∠BSA1 + ∠BSAn > ∠A1SAn.

Hence, the sum of the plane angles of the n-hedral angle SA1A2 . . . An is smaller
than the sum of the plane angles of the (n− 1)-hedral angle SBA2A3 . . . An−1.

5.20. The sum of plane angles of an arbitrary convex polyhedral angle is smaller
than 2π (see Problem 5.19 b)) and the sum of the dihedral angles of the convex
n-hedral angle is greater than (n−2)π (see Problem 5.19 a)). Hence, (n−2)π < 2π,
i.e., n < 4.

5.21. Let the sphere be tangent to the faces of the tetrahedral angle SABCD at
points K, L, M and N , where K belongs to face SAB, L to face SBC, etc. Then

∠ASK = ∠ASN, ∠BSK = ∠BSL, ∠CSL = ∠CSM, ∠DSM = ∠DSN.

Therefore,

∠ASD + ∠BSC = ∠ASN + ∠DSN + ∠BSL + ∠CSL =
∠ASK + ∠DSM + ∠BSK + ∠CSM = ∠ASB + ∠CSD.

5.22. Let the edges of the tetrahedral angle SABCD with vertex S be generators
of the cone with axis SO. In the trihedral angle formed by the rays SO, SA and
SB; let the dihedral angles at edges SA and SB be equal. By considering three
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other such angles we deduce that the sums of the opposite dihedral angles of the
tetrahedral angle SABCD are equal.

Now, suppose that the sums of the opposite dihedral angles are equal. Let
us consider the cone with generators SB, SA and SC. Suppose that SD is not
its generator. Let SD1 be the intersection line of the cone with plane ASD. In
tetrahedral angles SABCD and SABCD1 the sums of the opposite dihedral angles
are equal. It follows that the dihedral angles of trihedral angle SCDD1 satisfy the
relation ∠D + ∠D1 − 180◦ = ∠C.

Consider the trihedral angle polar to SCDD1 (cf. Problem 5.1). In this angle
the sum of two plane angles is equal to the third one; this is impossible thanks to
Problem 5.4.

5.23. a) Let the projection to the line perpendicular to line A1B1 send points
A, B and C to A′, B′ and C ′, respectively, and point C1 to Q. Let both points A1

and B1 go into one point, P . Since

A1B

A1C
=

PB′

PC ′
,

B1C

B1A
=

PC ′

PA′
,

C1A

C1B
=

QA′

QB′ ,

it follows that

A1B

A1C
· B1C

B1A
· C1A

C1B
=

PB′

PC ′
· PC ′

PA′
· QA′

QB′ =
PB′

PA′
· QA′

QB′ =

b

a
· a + x

b + x
, where |x| = PQ.

The equality b
a · a+x

b+x = 1 is equivalent to the fact that x = 0 (we have to take
into account that a 6= b because A′ 6= B′). But the equality x = 0 means that
P = Q, i.e., point C1 lies on line A1B1.

b) First, let us prove that if lines AA1, BB1 and CC1 pass through one point,
O, then the indicated relation holds. Let a = {OA}, b = {OB} and c = {OC}.
Since point C1 lies on line AB, it follows that

{OC1} = {OA}+ x{AB} = a + x(b− a) = (1− x)a + xb.

On the other hand, point C1 lies on line OC, therefore, {OC1} + γ{OC} = {0},
i.e.,

(1− x)a + xb + γc = 0.

Similar arguments for points A1 and B1 show that

(1− y)b + yc + αa = 0; (1− z)c + za + βb = 0.

Since vectors a, b and c are pairwise noncolinear, all triples of nonzero numbers
(p, q, r) for which

pa + qb + rc = 0

are proportional. The comparison of the first and the third of the obtained equalities
yield 1−x

x = z
β and the comparison of the second and the third ones yields − 1−y

y =
β

1−z . Consequently,
1− x

x
· 1− y

y
· 1− z

z
= 1.
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It remains to notice that

C1B

C1A
= −1− x

x
,

A1C

A1B
= −1− y

y
,

B1A

B1C
= −1− z

z
.

Now, suppose that the indicated relation holds and prove that then lines AA1,
BB1 and CC1 intersect at one point. Let C∗1 be the intersection point of line AB
with the line passing through point C and the intersection point of lines AA1 and
BB1. For point C∗1 the same relation holds as for point C1. Therefore,

C∗1A

C∗1B
=

C1A

C1B
.

Hence, C∗1 = C1, i.e., lines AA1, BB1 and CC1 meet at one point.
We can also verify that if the indicated relation holds and two of the lines AA1,

BB1 and CC1 are parallel, then the third line is also parallel to them.
5.24. a) On edges a, b and c of the trihedral angle, take arbitrary points A, B and

C. Let A1, B1 and C1 be points at which rays α, β and γ (or their continuations)
intersect lines BC, CA and AB. By applying the law of sines to triangles SA1B
and SA1C we get A1B

sin BSA1
= BS

sin BA1S and A1C
sin CSA1

= CS
sin CA1S . Taking into account

that sin BA1S = sinCA1S we get sin BSA1
sin CSA1

= A1B
A1C · CS

BS . As is easy to verify, this
means that

sin(b, α)
sin(c, α)

=
A1B

A1C
· CS

BS

(one only has to verify that the signs of these quantities coincide). Similarly,
sin(a,γ)
sin(b,γ) = C1A

C1B
· BS

AS and sin(c,β)
sin(a,β) = B1C

B1A
· AS

CS . It only remains to apply Menelaus’s
theorem to triangle ABC and notice that rays α, β and γ lie in one plane if and
only if points A1, B1 and C1 lie on one line.

The above solution has a small gap: we do not take into account the fact that
the lines on which rays α, β and γ lie can be parallel to lines BC, CA and AB. In
order to avoid this, points A, B and C should not be taken at random. Let A be
an arbitrary point on edge a and P and Q be points on edges b and c, respectively,
such that AP ‖ γ and AQ ‖ β. On edge p, take point B distinct from P and let
R be a point on edge c such that BR ‖ α. It remains to take on edge c a point C
distinct from Q and R. Now, points A1, B1 and C1 at which the rays α, β and γ
(or their extensions) intersect lines BC, CA and AB, respectively, always exist.

b) The solution almost literally repeats that of the preceding heading; one only
has to apply to triangle ABC not Menelaus’s theorem but Ceva’s theorem.

5.25. a) As is clear from the solution of Problem 5.24 a), it is possible to
select points A, B and C on edges a, b and c such that rays α, β and γ are not
parallel to lines BC, CA and AB and intersect these lines at points A1, B1 and C1,
respectively. Denote for brevity the dihedral angles between lines ab and aα , ac
and aα by U and V , respectively; denote the angles between rays b and α, c and α
by u and v, respectively; let us also denote the area of triangle XY Z by (XY Z).

Let us compute the volume of tetrahedron SABA1 in two ways. On the one
hand,

VSABA1 =
(SA1B) · ha

3
=

SA1 · SB · ha sin u

6
,



SOLUTIONS 69

where ha is the height dropped from vertex A to face SBC. On the other hand,

VSABA1 =
2
3

(SAB) · (SAA1) sin U

SA
(cf. Problem 3.3).

Let
SA1 · SB · ha sinu

6
=

2(SAB) · (SAA1) sin U

3SA
.

Similarly,
SA1 · SC · ha sin v

6
=

2(SAC) · (SAA1) sin V

3SA
.

By dividing one of these equalities by another one, we get

SB

SC
· sin u

sin v
=

(SAB)
(SAC)

· sin U

sinV
.

This equality means that

SB

SC
· sin(b, α)
sin(c, α)

=
(SAB)
(SAC)

· sin(ab, aα)
sin(ac, aα)

(one only has to verify that the signs of these expressions coincide). By applying
similar arguments to points B1 and C1 and multiplying the obtained identities we
get the required identity after a simplification.

b) To solve this problem, we have to make use of the results of Problems 5.24 a)
and 5.25 a).

c) To solve this problem one has to make use of the results of Problems 5.24 b)
and 5.25 a).

5.26. Let a, b and c be edges SA, SB and SC, respectively; α, β and γ rays SA1,
SB1 and SC1, respectively. Since ∠ASB1 = ∠ASC1, it follows that | sin(a, β)| =
| sin(a, γ)|. Similarly, | sin(b, α)| = | sin(b, γ)| and | sin(c, α)| = | sin(c, β)|. Hence,

∣∣∣∣
sin(a, γ)
sin(b, γ)

· sin(b, α)
sin(c, α)

· sin(c, β)
sin(a, β)

∣∣∣∣ = 1.

It is also clear that each of the three factors here is negative; hence, their product
is equal to −1. It remains to make use of the first Ceva’s theorem (Problem 5.24
b)).

5.27. It is easy to verify that

sin(a, γ) = − sin(b, γ′), sin(b, γ) = − sin(a, γ′), sin(b, α) = − sin(c, α′),

sin(c, α) = − sin(b, α′), sin(c, β) = − sin(a, β′), sin(a, β) = − sin(c, β′).

Therefore,

sin(a, γ′)
sin(b, γ′)

· sin(b, α′)
sin(c, α′)

· sin(c, β′)
sin(a, β′)

=
(

sin(a, γ)
sin(b, γ)

· sin(b, α)
sin(c, α)

· sin(c, β)
sin(a, β)

)−1

.

To solve headings a) and b) it suffices to make use of this identity and the first
theorems of Menelaus and Ceva (Problems 5.24 a) and 5.24 b)).
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Figure 43 (Sol. 5.28)

5.28. Let us consider the section by the plane passing through edge a perpen-
dicularly to it and let us denote the intersection points of the given lines and edges
with this plane by the same letters as the lines and edges themselves. The two
cases are possible:

1) Rays aα and aα′ are symmetric through the bisector of angle bac (Fig. 43
a)).

2) Rays aα and aα′ are symmetric through a line perpendicular to the bisector
of the angle bac (Fig. 43 b)).

In the first case the angle of rotation from ray aα to ray ab is equal to the angle
of rotation from ray ac to ray aα′ and the angle of rotation from ray aα to ray ac
is equal to the ray of rotation from ray ab to ray aα.

In the second case these angles are not equal but differ by 180◦. Passing to the
angles between halfplanes we get:

in the first case, sin(ab, aα) = − sin(ac, aα′) and sin(ac, aα) = − sin(ab, aα′);
in the second case, sin(ab, aα) = sin(ac, aα′) and sin(ac, aα) = sin(ab, aα′).
In both cases

sin(ab, aα)
sin(ac, aα)

=
sin(ac, aα′)
sin(ab, aα′)

.

By performing similar arguments for the edges b and c and by multiplying all these
identities we get

sin(ab, aα)
sin(ac, aα)

· sin(bc, bβ)
sin(ba, bβ)

· sin(ca, cγ)
sin(cb, cγ)

=

(
sin(ab, aα′)
sin(ac, aα′)

· sin(bc, bβ′)
sin(ba, bβ′)

· sin(ca, cγ′)
sin(cb, cγ′)

)−1

.

To solve headings a) and b) it suffices to make use of this identity and second
theorems of Menelaus and Ceva (problems 5.25 b) and 5.25 c)).

5.29. Denote by πij the plane symmetric to plane PAiAj through the bisector
plane of the dihedral angle at edge AiAj . As follows from Problem 5.28 b), plane
πil passes through the intersection line of planes πij and πik. Let us consider three
planes: π12, π23 and π31. Two cases are possible:
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1) These planes have a common point P ∗. Then planes π14, π24 and π34 pass
through lines A1P

∗, A2P
∗ and A3P

∗, respectively, i.e., all the 6 planes πij pass
through point P ∗.

2) Planes π12 and π13, π12 and π23, π31 and π32 intersect along lines l1, l2, l3,
respectively, and lines l1, l2, l3 are parallel to each other. Then planes π14, π24

and π34 pass through lines l1, l2 and l3, respectively, i.e., all the six planes πij are
parallel to one line.

5.30. The projection to plane BSC of any line l passing through point S co-
incides with the line along which the plane that passes through edge SA and line
l intersects plane BSC. Therefore, it suffices to prove that planes drawn through
edge SA and the intersection lines of planes πb and πc, π′b and π′c are symmetric
through the bisector plane of the dihedral angle at edge SA. This follows from the
result of Problem 5.25 c).

5.31. a) In the solution of this problem we will make use of the fact that the
projection D1 of point D to plane ABC lies on the circle circumscribed about
triangle ABC (Problem 7.32 b)).

In triangles DAB, DBC and DAC draw heights DC1, DA1 and DB1. We have
to show that rays DA1, DB1 and DC1 lie in one plane, i.e., points A1, B1 and
C1 lie on one line. Since line DD1 is perpendicular to plane ABC, it follows that
DD1 ⊥ A1C. Moreover, DA1 ⊥ A1C. Therefore, line A1C is perpendicular to
plane DD1A1; in particular, D1A1 ⊥ A1C. Therefore, A1, B1 and C1 are the bases
of the perpendiculars dropped to lines BC, CA and AB, respectively, from point
D1 that lies on the circle circumscribed about triangle ABC.

(For points B1 and C1 the proof is carried out in the same way as for point A1.)
It is possible to prove that points A1, B1 and C1 lie on one line (see Problem

2.29).
b) If AA1 is the height of triangle ABC and O the center of its circumscribed

circle, then rays AA1 and AO are symmetric through the bisector of angle BAC.
Indeed, it is easy to verify that

∠BAO = ∠CAA1 = |90◦ − ∠C|

(one has to consider two cases: when angle C is an obtuse one and when it is
an acute one). Since, as has been proved in the preceding heading, the lines that
connect vertex D with the intersection points of the heights of faces DAB, DBC
and DAC lie in one plane, it follows that the lines that connect vertex D with the
centers of circumscribed circles of faces DAB, DBC and DAC also lie in one plane
(cf. Problem 5.27 a)).
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CHAPTER 6. TETRAHEDRON, PYRAMID, PRISM

§1. Properties of tetrahedrons

6.1. Is it true for any tetrahedron that its heights meet at one point?
6.2. a) Through vertex A of tetrahedron ABCD there are drawn 3 planes

perpendicular to the opposite edges. Prove that these planes intersect along one
line.

b) Through each vertex of tetrahedron the plane perpendicular to the opposite
face and containing the center of its circumscribed circle is drawn. Prove that these
four planes intersect at one point.

6.3. A median of the tetrahedron is a segment that connects a vertex of the
tetrahedron with the intersection point of the medians of the opposite face. Ex-
press the length of the median of the tetrahedron in terms of the lengths of the
tetrahedron’s edges.

6.4. Prove that the center of the sphere inscribed in a tetrahedron lies inside
the tetrahedron formed by the tangent points.

6.5. Consider a tetrahedron. Let S1 and S2 be the areas of the tetrahedron’s
faces adjacent to edge a; let α be the dihedral angle at this edge; b the edge opposite
to a; let ϕ be the angle between b and a. Prove that

S2
1 + S2

2 − 2S1S2 cosα =
1
4
(ab sin ϕ)2.

6.6. Prove that the product of the lengths of two opposite edges of the tetra-
hedron divided by the product of sines of the dihedral angles at these edges is the
same for all the three pairs of the opposite edges of the tetrahedron. (The law of
sines for a tetrahedron.)

6.7. a) Let S1, S2, S3 and S4 be the areas of the faces of a tetrahedron; P1, P2

and P3 the areas of the faces of the parallelepiped whose faces pass through the
edges of the tetrahedron parallel to its opposite edges. Prove that

S2
1 + S2

2 + S2
3 + S2

4 = P 2
1 + P 2

2 + P 2
3 .

b) Let h1, h2, h3 and h4 be the heights of the tetrahedron, d1, d2 and d3 the
distances between its opposite edges. Prove that

1
h2

1

+
1
h2

2

+
1
h2

3

+
1
h2

4

=
1
d2
1

+
1
d2
2

+
1
d2
3

.

6.8. Let Si, Ri and li (i = 1, 2, 3, 4) be the areas of the faces, the radii of the
disks circumscribed about these faces and the distances from the centers of these
disks to the opposite vertices of the tetrahedron, respectively. Prove that

18V 2 =
4∑

i=1

S2
i (l2i −R2

i ),
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where V is the volume of the tetrahedron.
6.9. Prove that for any tetrahedron there exists a triangle the lengths of whose

sides are equal to the products of the lengths of the opposite edges of the tetrahedron
and the area S of this triangle is equal to 6V R, where V is the volume of the
tetrahedron, R is the radius of its circumscribed sphere. (Krell’s formula).

6.10. Let a and b be the lengths of two skew edges of a tetrahedron, α and β
the dihedral angles at these edges. Prove that the quantity

a2 + b2 + 2ab cot α cot β

does not depend on the choice of the pair of skew edges. (Bretshneider’s theorem).

6.11. Prove that for any tetrahedron there exists not less than 5 and not more
than 8 spheres each of which is tangent to all the planes of its faces.

§2. Tetrahedrons with special properties

6.12. In triangular pyramid SABC with vertex S the lateral edges are equal
and the sum of dihedral angles at the edges SA and SC is equal to 180◦. Express
the length of the lateral edge through the sides a and c of triangle ABC.

6.13. The sum of the lengths of one pair of skew edges of a tetrahedron is equal
to the sum of the lengths of another pair. Prove that the sum of dihedral angles at
the first pair of edges is equal to the sum of dihedral angles at the second pair.

6.14. All the faces of a tetrahedron are right triangles similar to each other.
Find the ratio of the longest edge to the shortest one.

6.15. The edge of a regular tetrahedron ABCD is equal to a. The vertices of a
spatial quadrilateral A1B1C1D1 lie on the corresponding faces of the tetrahedron
(A1 lies on the face opposite to A, etc.) and its sides are perpendicular to the faces of
the tetrahedron: A1B1 ⊥ BCD, B1C1 ⊥ CDA, C1D1 ⊥ DAB and D1A1 ⊥ ABC.
Calculate the lengths of the sides of quadrilateral A1B1CD1.

6.16. A sphere is tangent to edges AB, BC, CD and DA of tetrahedron ABCD
at points L, M , N and K, respectively; the tangent points are the vertices of a
square. Prove that if the sphere is tangent to edge AC, then it is tangent to edge
BD.

6.17. Let M be the center of mass of tetrahedron ABCD, O the center of its
circumscribed sphere.

a) Prove that lines DM and OM are perpendicular if and only if

AB2 + BC2 + CA2 = AD2 + BD2 + CD2.

b) Prove that if points D and M and the intersection points of the medians of
the faces at vertex D lie on one sphere, then DM ⊥ OM .

§3. A rectangular tetrahedron

6.18. In tetrahedron ABCD, the plane angles at vertex D are right ones. Let
∠CAD = α, ∠CBD = β and ∠ACB = ϕ. Prove that cos ϕ = sin α sin β.

6.19. All the plane angles at one vertex of a tetrahedron are right ones. Prove
that the lengths of segments that connect the midpoints of the opposite edges are
equal.
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6.20. In tetrahedron ABCD, the plane angles at vertex D are right ones. Let
h be the height of the tetrahedron dropped from vertex D; let a, b and c be the
lengths of the edges going from vertex D. Prove that

1
h2

=
1
a2

+
1
b2

+
1
c2

.

6.21. In tetrahedron ABCD the plane angles at vertex A are right ones and
AB = AC + AD. Prove that the sum of plane angles at vertex B is equal to 90◦.

6.22. Three dihedral angles of a tetrahedron are right ones. Prove that this
tetrahedron has three plane right angles.

6.23. In a tetrahedron, three dihedral angles are right ones. One of the segments
that connects the midpoints of the opposite edges is equal to a, another one to b
and b > a. Find the length of the longest edge of the tetrahedron.

6.24. Three dihedral angles of a tetrahedron not belonging to one vertex are
equal to 90◦ and the remaining dihedral angles are equal to each other. Find these
angles.

§4. Equifaced tetrahedrons

A tetrahedron is called an equifaced one if all its faces are equal, i.e., its opposite
edges are pairwise equal.

6.25. Prove that all the faces of a tetrahedron are equal if and only if one of the
following conditions holds:

a) the sum of the plane angles at a vertex is equal to 180◦ and, moreover, there
are two pairs of equal opposite edges;

b) the centers of the inscribed and circumscribed spheres coincide;
c) the radii of the circles circumscribed about the faces are equal;
d) the center of mass and the center of the circumscribed sphere coincides.
6.26. In tetrahedron ABCD, the dihedral angles at edges AB and DC are equal;

the dihedral angles at edges BC and AD are also equal. Prove that AB = DC and
BC = AD.

6.27. The line that passes through the center of mass of tetrahedron ABCD
and the center of its circumscribed sphere intersects edges AB and CD. Prove that
AC = BD and AD = BC.

6.28. The line that passes through the center of mass of tetrahedron ABCD
and the center of one of its escribed spheres intersects edges AB and CD. Prove
that AC = BD and AD = BC.

6.29. Prove that if

∠BAC = ∠ABD = ∠ACD = ∠BDC

then tetrahedron ABCD is an equifaced one.
6.30. Given tetrahedron ABCD; let Oa, Ob, Oc and Od be the centers of the

escribed spheres tangent to its faces BCD, ACD, ABD and ABC, respectively.
Prove that if trihedral angles OaBCD, ObACD, OcABD and OdABC are right
ones, then all the faces of the given tetrahedron are equal.

Remark. There are also other conditions that distinguish equifaced tetrahe-
drons; see, for example, Problems 2.32, 6.48 and 14.22.
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6.31. Edges of an equifaced tetrahedron are equal to a, b and c. Compute its
volume V and the radius R of the circumscribed sphere.

6.32. Prove that for an equifaced tetrahedron
a) the radius of the inscribed ball is a half of the radius of the ball tangent to

one of the faces of tetrahedron and extensions of the three other faces;
b) the centers of the four escribed balls are the vertices of the tetrahedron equal

to the initial one.
6.33. In an equifaced tetrahedron ABCD height AH is dropped; H1 is the

intersection point of the heights of face BCD; h1 and h2 are the lengths of the
segments into which point H1 divides one of the heights of face BCD.

a) Prove that points H and H1 are symmetric through the center of the circum-
scribed circle of triangle BCD.

b) Prove that AH2 = 4h1h2.
6.34. Prove that in an equifaced tetrahedron the bases of the heights, the

midpoints of the heights and the intersection points of the faces’ heights all belong
to one sphere (the sphere of 12 points).

6.35. a) Prove that the sum of the cosines of dihedral angles of an equifaced
tetrahedron is equal to 2.

b) The sum of the plane angles of a trihedral angle is equal to 180◦. Find the
sum of the cosines of its dihedral angles.

§5. Orthocentric tetrahedrons

A tetrahedron is called an orthocentric one if all its heights (or their extensions)
meet at one point.

6.36. a) Prove that if AD ⊥ BC, then the heights dropped from vertices B and
C (as well as the heights dropped from vertices A and D) intersect at one point
and this point lies on the common perpendicular to AD and BC.

b) Prove that if the heights dropped from vertices B and C intersect at one
point, then AD ⊥ BC (consequently, the heights dropped from vertices A and D
also intersect at one point).

c) Prove that a tetrahedron is an orthocentric one if and only if two pairs of its
opposite edges are perpendicular to each other (in this case the third pair of its
opposite edges is also perpendicular to each other).

6.37. Prove that in an orthocentric tetrahedron the common perpendiculars to
the pairs of opposite edges intersect at one point.

6.38. Let K, L, M and N be the midpoints of edges AB, BC, CD and DA of
tetrahedron ABCD.

a) Prove that AC ⊥ BD if and only if KM = LN .
b) Prove that the tetrahedron is an orthocentric one if and only if the segments

that connect the midpoints of opposite edges are equal.
6.39. a) Prove that if BC ⊥ AD, then the heights dropped from vertices A and

D to line BC have the same base.
b) Prove that if the heights dropped from vertices A and D to line BC have the

same base, then BC ⊥ AD (hence, the heights dropped from vertices B and C to
line AD also have the same base).

6.40. Prove that a tetrahedron is an orthocentric one if and only if one of the
following conditions holds:

a) the sum of squared lengths of the opposite edges are equal;
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b) the products of the cosines of the opposite dihedral angles are equal;
c) the angles between the opposite edges are equal.

Remark. There are also other conditions that single out orthocentric tetrahe-
drons: see, for example, Problems 2.11 and 7.1.

6.41. Prove that in an orthocentric tetrahedron:
a) all the plane angles at one vertex are simultaneously either acute, or right, or

obtuse;
b) one of the faces is an acute triangle.
6.42. Prove that in an orthocentric triangle the relation

OH2 = 4R2 − 3d2

holds, where O is the center of the circumscribed sphere, H the intersection point
of the heights, R the radius of the circumscribed sphere, d the distance between
the midpoints of the opposite edges.

6.43. a) Prove that the circles of 9 points of triangles ABC and DBC belong
to one sphere if and only if BC ⊥ AD.

b) Prove that for an orthocentric triangle circles of 9 points of all its faces belong
to one sphere (the sphere of 24 points).

c) Prove that if AD ⊥ BC, then the sphere that contains circles of 9 points
of triangles ABC and DBC and the sphere that contains circles of 9 points of
triangles ABD and CBD intersect along a circle that lies in the plane that divides
the common perpendicular to BC and AD in halves and is perpendicular to it.

6.44. Prove that in an orthocentric tetrahedron the centers of mass of faces, the
intersection points of the heights of faces, and the points that divide the segments
that connect the intersection point of the heights with the vertices in ratio 2 : 1
counting from the vertex lie on one sphere (the sphere of 12 points).

6.45. a) Let H be the intersection point of heights of an orthocentric tetrahe-
dron, M ′ the center of mass of a face, N the intersection point of ray HM ′ with
the tetrahedron’s circumscribed sphere. Prove that HM ′ : M ′N = 1 : 2.

b) Let M be the center of mass of an orthocentric tetrahedron, H ′ the inter-
section point of heights of a face, N the intersection point of ray H ′M with the
tetrahedron’s circumscribed sphere. Prove that H ′M : MN = 1 : 3.

6.46. Prove that in an orthocentric tetrahedron Monge’s point (see Problem
7.32 a)) coincides with the intersection point of heights.

§6. Complementing a tetrahedron

By drawing a plane through every edge of a tetrahedron parallel to the opposite
edge we can complement the tetrahedron to a parallelepiped (Fig. 44).

6.47. Three segments not in one plane intersect at point O that divides each
of them in halves. Prove that there exist exactly two tetrahedrons in which these
segments connect the midpoints of the opposite edges.

6.48. Prove that all the edges of a tetrahedron are equal if and only if one of
the following conditions holds:

a) by complementing the tetrahedron we get a rectangular parallelepiped;
b) the segments that connect the midpoints of the opposite edges are perpendic-

ular to each other;
c) the areas of all the faces are equal;
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Figure 44 (§6)

d) the center of mass and the center of an escribed sphere coincide.
6.49. Prove that in an equifaced tetrahedron all the plane angles are acute ones.
6.50. Prove that the sum of squared lengths of the edges of a tetrahedron is

equal to four times the sum of the squared distances between the midpoints of its
opposite edges.

6.51. Let a and a1, b and b1, c and c1 be the lengths of the opposite edges of a
tetrahedron; α, β, γ the corresponding angles between them (α, β, γ ≤ 90◦). Prove
that one of the three numbers aa1 cosα, bb1 cos β and cc1 cos γ is the sum of the
other two ones.

6.52. Line l passes through the midpoints of edges AB and CD of tetrahedron
ABCD; a plane Π that contains l intersects edges BC and AD at points M and
N . Prove that line l divides segment MN in halves.

6.53. Prove that lines that connect the midpoint of a height of a regular tetra-
hedron with vertices of the face onto which this height is dropped are pairwise
perpendicular.

§7. Pyramid and prism

6.54. The planes of lateral faces of a triangular pyramid constitute equal angles
with the plane of the base. Prove that the projection of the height to the plane of
the base is the center of the inscribed or escribed circle at the base.

6.55. In a triangular pyramid the trihedral angles at edges of the base are equal
to α. Find the volume of the pyramid if the lengths of the edges at the base are
equal to a, b and c.

6.56. On the base of a triangular pyramid SABC, a point M is taken and lines
parallel to edges SA, SB and SC and intersecting lateral faces at points A1, B1

and C1 are drawn through M . Prove that

MA1

SA
+

MB1

SB
+

MC1

SC
= 1.

6.57. Vertex S of triangular pyramid SABC coincides with the vertex of a
circular cone and points A, B and C lie on the circle of its base. The dihedral
angles at edges SA, SB and SC are equal to α, β and γ. Find the angle between
plane SBC and the plane tangent to the surface of the cone along the generator
SC.
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6.58. Similarly directed vectors {AA1}, {BB1} and {CC1} are perpendicular
to plane ABC and their lengths are equal to the corresponding heights of triangle
ABC the radius of whose inscribed circle is equal to r.

a) Prove that the distance from the intersection point M of planes A1BC, AB1C
and ABC1 to plane ABC is equal to r.

b) Prove that the distance from the intersection point N of planes A1B1C,
A1BC1 and AB1C1 to plane ABC is equal to 2r.

* * *

6.59. In a regular truncated quadrangular pyramid with height of the lateral
face equal to a a ball can be inscribed. Find the area of the pyramid’s lateral
surface.

6.60.The perpendicular to the base of a regular pyramid at point M intersects
the planes of lateral faces at points M1, . . . , Mn. Prove that the sum of the lengths
of segments MM1, . . . , MMn is the same for all points M from the base of the
pyramid.

6.61. A ball is inscribed into an n-gonal pyramid. The lateral faces of the
pyramid are rotated about the edges of the base and arranged in the plane of the
base so that they lie on the same side with respect to the corresponding edges
together with the base itself. Prove that the vertices of these faces distinct from
the vertices of the base lie on one circle.

6.62. From the vertices of the base of the inscribed pyramid the heights are
drawn in the lateral faces. Prove that the lines that connect the basis of the
heights in each face are parallel to one plane. (The plane angles at the vertex of
the pyramid are supposed to be not right ones.)

6.63. The base of a pyramid with vertex S is a parallelogram ABCD. Prove
that the lateral edges of the pyramid form equal angles with ray SO that lies inside
the tetrahedral angle SABCD if and only if

SA + SC = SB + SD.

6.64. The bases of a truncated quadrangular pyramid ABCDA1B1C1D1 are
parallelograms ABCD and A1B1C1D1. Prove that any line that intersects three
of the four lines AB, BC1, CD1 and DA1 either intersects the fourth line or is
parallel to it.

* * *

6.65. Find the area of the total surface of the prism circumscribed about a
sphere if the area of the base of the prism is equal to S.

6.66. On the lateral edges BB1 and CC1 of a regular prism ABCA1B1C1,
points P and P1 are taken so that

BP : PB1 = C1P : PC = 1 : 2.

a) Prove that the dihedral angles at edges AP1 and A1P of tetrahedron AA1PP1

are right ones.
b) Prove that the sum of dihedral angles at edges AP , PP1 and P1A1 of tetra-

hedron AA1PP1 is equal to 180◦.
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Problems for independent study

6.67. In a prism (not necessarily right one) a ball is inscribed.
a) Prove that the height of the prism is equal to the diameter of the ball.
b) Prove that the tangent points of the ball with the lateral faces lie in one plane

and this plane is perpendicular to the lateral edges of the prism.
6.68. A sphere is tangent to the lateral faces of a prism at the centers of the

circles circumscribed about them; the plane angles at the vertex of this prism are
equal. Prove that the prism is a regular one.

6.69. A sphere is tangent to the three sides of the base of a triangular pyramid
at their midpoints and intersects the lateral edges at their midpoints. Prove that
the pyramid is a regular one.

6.70. The sum of the lengths of the opposite edges of tetrahedron ABCD is
the same for any pair of opposite edges. Prove that the inscribed circles of any
two faces of the tetrahedron are tangent to the common edge of these faces at one
point.

6.71. Prove that if the dihedral angles of a tetrahedron are equal, then this
tetrahedron is a regular one.

6.72. In a triangular pyramid SABC, angle ∠BSC is a right one and ∠ASC =
∠ASB = 60◦. Vertices A and S and the midpoints of edges SB, SC, AB and AC
lie on one sphere. Prove that edge SA is a diameter of the sphere.

6.73. In a regular hexagonal pyramid, the center of the circumscribed sphere
lies on the surface of the inscribed sphere. Find the ratio of radii of the inscribed
and circumscribed spheres.

6.74. In a regular quadrangular pyramid, the center of the circumscribed sphere
lies on the surface of the inscribed one. Find the value of the plane angle at the
vertex of the pyramid.

6.75. The base of triangular prism ABCA1B1C1 is an isosceles triangle. It is
known that pyramids ABCC1, ABB1C1 and AA1B1C1 are equal. Find the dihedral
angles at the edges of the base of the prism.

Solutions

6.1. No, not for any tetrahedron. Consider triangle ABC in which angle ∠A
is not a right one and erect perpendicular AD to the plane of the triangle. In
tetrahedron ABCD, the heights drawn from vertices C and D do not intersect.

6.2. a) The perpendicular dropped from vertex A to plane BCD belongs to all
the three given planes.

b) It is easy to verify that all the indicated planes pass through the center of the
circumscribed sphere of the tetrahedron.

6.3. Let AD = a, BD = b, CD = c, BC = a1, CA = b1 and AB = c1. Compute
the length m of median DM . Let N be the midpoint of edge BC, DN = p and
AN = q. Then

DM2 + MN2 − 2DM ·MN cosDMN = DN2

and
DM2 + AM2 − 2DM ·AM cosDMA = AD2

and, therefore,

(*) m2 +
q2

9
− 2mq cos ϕ

3
= p2 and m2 +

4q2

9
+

4mq cos ϕ

3
= a2.
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By multiplying the first of equalities (∗) by 2 and adding it to the second equality
in (∗) we get

3m2 = a2 + 2p2 − 2q2

3
.

Since

p2 =
2b2 + 2c2 − a2

1

4
and q2 =

2b2
1 + 2c2

1 − a2
1

4
,

it follows that
9m2 = 3(a2 + b2 + c2)− a2

1 − b2
1 − c2

1.

6.4. It suffices to prove that if the sphere is inscribed in the trihedral angle, then
the plane passing through the tangent points separates vertex S of the trihedral
angle from the center O of the inscribed sphere. The plane that passes through the
tangent points coincides with the plane that passes through the circle along which
the cone with vertex S is tangent to the given sphere. Clearly, this plane separates
points S and O; to prove this, we can consider any section that passes through S
and O.

6.5. The projection of the tetrahedron to the plane perpendicular to edge a
is a triangle with sides 2S1

a , 2S2
a and b sin ϕ; the angle between the first two sides

is equal to α. Expressing the law of cosines for this triangle we get the required
statement.

6.6. Consider tetrahedron ABCD. Let AB = a, CD = b; let α and β be
the dihedral angles at edges AB and CD; S1 and S2 be the areas of faces ABC
and ABD, S3 and S4 the areas of faces CDA and CDB; V the volume of the
tetrahedron. By Problem 3.3

V =
2S1S2 sin α

3a
and V =

2S3S4 sin β

3b
.

Hence,
ab

sinα sin β
=

4S1S2S3S4

9V 2
.

6.7. a) Let α, β and γ be the dihedral angles at the edges of the face with area
S1. Then

S1 = S2 cos α + S3 cosβ + S4 cos γ

(cf. Problem 2.13). Moreover, thanks to Problem 6.5

S2
1 + S2

2 − 2S1S2 cosα = P 2
1 ,

S2
1 + S2

3 − 2S1S3 cos β = P 2
2 ,

S2
1 + S2

4 − 2S1S4 cos γ = P 2
3 .

Therefore,

P 2
1 + P 2

2 + P 2
3 = S2

2 + S2
3 + S2

4 + 3S2
1 − 2S1(S2 cosα + S3 cos β + S4 cos γ) =

= S2
1 + S2

2 + S2
3 + S2

4 .

b) By dividing both parts of the equality obtained in heading a) by 9V 2, where
V is the volume of the tetrahedron, we get the desired statement.



SOLUTIONS 81

6.8. First, let us carry out the proof for the case when the center of the circum-
scribed ball lies inside the tetrahedron. First of all, let us prove that

l2i −R2
i = 2hidi,

where di is the distance from the center of the circumscribed ball to the i-th face,
hi the height of the tetrahedron dropped to this face. For definiteness sake we will
assume that the index i corresponds to face ABC.

Let O be the center of the circumscribed sphere of tetrahedron ABCD, O1 the
projection of O to face ABC, DH the height of , H1 the projection of O to DH.
Then

O1H
2 = DO2

1 −DH2 = l2i − h2
i ;

OH2
1 = DO2 −DH2

1 = R2 − (hi − di)2 = R2 − d2
i + 2hidi − h2

i ,

where R is the radius of the circumscribed sphere of the tetrahedron. Since O1H =
OH1, it follows that l2i −R2 + d2

i = 2hidi. It remains to notice that

R2
i = AO2

1 = AO2 −OO2
1 = R2 − d2

i .

The following transformations complete the proof:

∑
S2

i (l2i −R2
i ) =

∑
2S2

i hidi =
∑

2S2
i h2

i

di

hi
= 18V 2

∑ di

hi
.

By Problem 8.1.b)
∑ di

hi
= 1.

If the center of the circumscribed ball lies outside the tetrahedron our arguments
practically do not change: one only has to assume one of the quantities di to be
negative.

6.9. Let the lengths of edges AD, BD and CD be equal to a, b and c, respec-
tively; let the lengths of edges BC, CA and AB be equal to a′, b′ and c′, respectively.
Through vertex D, let us draw a plane Π tangent to the sphere circumscribed about
the tetrahedron. Consider tetrahedron A1BC1D formed by planes Π, BCD, ABD
and the plane that passes through the vertex B parallel to plane ACD and tetrahe-
dron AB2C2D formed by planes Π, ABD, ACD and the plane that passes through
vertex A parallel to plane BCD (Fig. 45).

Figure 45 (Sol. 6.9)
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Since DC1 is the tangent to the circle circumscribed about triangle DBC, it
follows that ∠BDC1 = ∠BCD. Moreover, BC1 ‖ CD, therefore, ∠C1BD =
∠BDC. Hence, 4DC1B ∼ 4CBD and, therefore, DC1 : DB = CB : CD, i.e.,
DC1 = a′b

c . Similarly, DA1 = c′b
a , DC2 = b′a

c and DB2 = c′a
b . Since 4A1C1D ∼

4DC2B2, it follows that A1C1 : A1D = DC2 : DB2, i.e., A1C1 = b′b2
ac .

Thus, the lengths of the sides of triangle A1C1D multiplied by ac
b are equal to

a′a, b′b and c′c, respectively, and, therefore,

SA1C1D =
b2

a2c2
S.

Now, let us find the volume of tetrahedron A1BC1D. To this end, let us consider
diameter DM of the circumscribed sphere of the initial tetrahedron and the perpen-
dicular BK dropped to plane A1C1D. It is clear that BK ⊥ DK and DM ⊥ DK.
From the midpoint O of segment DM drop perpendicular OL to segment DB.
Since 4BDK ∼ 4DOL, it follows that BK : BD = DL : DO, i.e., BK = b2

2R .
Hence,

VA1BC1D =
1
3
BK · SA1C1D =

b4

6Ra2c2
S.

The ratio of volumes of tetrahedrons A1BC1D and ABCD is equal to the prod-
uct of ratios of the areas of faces BC1D and BCD divided by the ratio of the lengths
of the heights dropped to these faces; the latter ratio is equal to SA1BD : SABD.
Since 4DB1B ∼ 4CBD, we have:

SBC1D : SBCD = (DB : CD)2 = b2 : c2.

Similarly,
SA1BD : SABD = b2 : a2.

Therefore,

V =
a2c2

b4
VA1BC1D =

a2c2

b4
· b4

6Ra2c2
S =

S

6R
.

6.10. Let S1 and S2 be the areas of faces with common edge a, S3 and S4 the
areas of faces with common edge b. Further, let a, m and n be the lengths of the
edges of the face of area S1; let α, γ and δ be the values of the dihedral angles at
these edges, respectively; h1 the length of the height dropped to this face; H the
base of this height; V the volume of the tetrahedron.

By connecting point H with the vertices of face S1 (we will denote the face by
the same letter as the one we used to denote its area) we get three triangles.

By expressing the area of face S1 in terms of the areas of these triangles we get:

ah1 cot α + mh1 cot γ + nh1 cot δ = 2S1.

(Since angles α, γ and δ vary from 0◦ to 180◦, this formula remains true even if H
lies outside the face.) Taking into account that h1 = 3V

S1
we get

a cot α + m cot γ + n cot δ =
2S2

1

3V
.
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By adding up such equalities for faces S1 and S2 and subtracting from them the
equalities for the other faces we get

a cot α− b cot β =
S2

1 + S2
2 − S2

3 − S2
4

3V
.

Let us square this equality, replace cot2 α and cot2 β with 1
sin2 α

− 1 and 1
sin2 β

− 1,
respectively, and make use of the equalities

a2

sin2 α
=

4S2
1S2

2

9V 2
,

b2

sin2 β
=

4S2
3S2

4

9V 2
,

(see Problem 3.3). We get

a2 + b2 + 2ab cot α cot β =
2Q− T

9V 2
,

where Q is the sum of squared pairwise products of areas of the faces, T is the sum
of the fourth powers of the areas of the faces.

6.11. Let V be the volume of the tetrahedron; S1, S2, S3 and S4 the areas of
its faces. If the distance from point O to the i-th face is equal to hi, then

∑
εihiSi

3
= V,

where εi = +1 if point O and the tetrahedron lie on one side of the i-th face and
εi = −1 otherwise. Therefore, if r is the radius of the ball tangent to all the planes
of the faces of the tetrahedron, then (

P
εiSi)r
3 = V , i.e.,

∑
εiSi > 0.

Conversely, if for a given collection of signs εi = ±1 the value
∑

εiSi is positive,
then there exists a corresponding ball. Indeed, consider a point for which

h1 = h2 = h3 = r, where r = 3VP
εiSi

(in other words, we consider the intersection point of the three planes). For this
point, h4 is also equal to r.

For any tetrahedron there exists an inscribed ball (εi = 1 for all i). Moreover,
since (by Problem 10.22) the area of any face is smaller than the sum of the areas of
the other faces, it follows that there exist 4 escribed balls each of which is tangent
to one of the faces and the extensions of the other three faces (one of the numbers
εi is equal to −1).

It is also clear that if
∑

εiSi is positive for a collection εi = ±1, then it is
negative for the collection with opposite signs. Since there are 24 = 16 collections
altogether, there are not more than 8 balls. There will be precisely 8 of them if the
sum of the areas of any two faces is not equal to the sum of areas of the other two
faces.

6.12. On ray AS, take point A1 so that AA1 = 2AS. In pyramid SA1BC the
dihedral angles at edges SA1 and SC are equal and SA1 = SC; hence, A1B =
CB = a. Triangle ABA1 is a right one because its median BS is equal to a half of
AA1. Therefore,

AA2
1 = A1B

2 + AB2 = a2 + c2, i.e., AS =
√

A2+c2

2 .
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6.13. If the sum of edges AB and CD in tetrahedron ABCD is equal to the
sum of the lengths of edges BC and AD, then there exists a sphere tangent to these
four edges in inner points (see Problem 8.30). Let O be the center of the sphere.
Now, observe that if tangents XP and XQ are drawn from point X to the sphere
centered at O, then points P and Q are symmetric through the plane that passes
through line XO and the midpoint of segment PQ; hence, planes POX and QOX
form equal angles with plane XPQ.

Let us draw four planes passing through point O and the considered edges of
tetrahedron. They split each of the considered dihedral angles into 2 dihedral
angles. We have shown above that the obtained dihedral angles adjacent to one
face of the tetrahedron are equal. One of the obtained angles enters both of the
considered sums of dihedral angles for each face of the tetrahedron.

6.14. Let a be the length of the longest edge of the tetrahedron. In both faces
adjacent to this edge this edge is the hypothenuse. These faces are equal because
similar rectangular triangles with a common hypothenuse are equal; let m and n
be the lengths of the legs of these right triangles, b the length of the sixth edge of
the tetrahedron. The following two cases are possible:

1) The edges of length m exit from the same endpoint of edge a, the edges of
length n exit from the other endpoint. In triangle with sides m, m and b only the
angle opposite to b can be a right one; moreover, in triangle with sides a, m and n
the legs should also be equal, i.e., m = n. As a result we see that all the faces of
the tetrahedron are equal.

2) From each endpoint of edge a one edge of length m and one edge of length n
exits. Then if a = b the tetrahedron is also an equifaced one.

Now, observe that an equifaced tetrahedron cannot have right plane angles
(Problem 6.49). Therefore, only the second variant is actually possible and b < a.
Let, for definiteness, m ≥ n. Since triangles with sides a, m, n and m, n, b are
similar and side n cannot be the shortest side of the second triangle, it follows that

a : m = m : n = n : b = λ > 1.

Taking this into account we get a2 = m2 +n2; hence, λ4 = λ2 +1, i.e., λ =
√

1+
√

5
2 .

Figure 46 (Sol. 6.15)
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6.15. Let us drop perpendiculars A1K and B1K to CD, B1L and C1L to
AD, C1M and D1M to AB, D1N and A1N to BC. The ratios of the lengths of
these perpendiculars are equal to the cosine of the dihedral angle at the edge of a
regular tetrahedron, i.e., they are equal to 1

3 (see Problem 2.14). Since the sides
of quadrilateral A1B1C1D1 are perpendicular to the faces of a regular tetrahedron,
their lengths are equal (see Problem 8.25). Hence,

A1K = B1L = C1M = D1N = x and B1K = C1L = D1M = A1N = 3x.

Let us consider the unfolding of the tetrahedron (Fig. 46). The edges of the
tetrahedron are divided by points K, L, M and N into segments of length m and
n. Since

x2 + n2 = D1B
2 = 9x2 + m2,

it follows that

8x2 = n2 −m2 = (n + m)(n−m) = a(n−m).

Let ray BD1 intersect side AC at point P ; let Q and R be the projections of
point P to sides AB and BC, respectively. Since PR : PQ = 1 : 3, we have:
CP : PA = 1 : 3. Therefore,

BR

CB
=

1
2

+
3
8

=
7
8

and
BQ

AB
=

1
2

+
1
8

=
5
8
.

Hence,
n

m
=

BR

BQ
=

7
5

and, therefore, x = a
4
√

3
. The lengths of the sides of quadrilateral A1B1C1D1 are

equal to 2
√

2x = a√
6
.

Figure 47 (Sol. 6.16)

6.16. By the hypothesis KLMN is a square. Let us draw planes tangent to
the sphere through points K, L, M and N . Since the angles of all these planes
with plane KLMN are equal, all these planes intersect at one point, S, lying on
line OO1, where O is the center of the sphere and O1 is the center of the square.
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These planes intersect the plane of the square KLMN along the square TUV W the
midpoints of whose sides are points K, L, M and N (Fig. 47). In the tetrahedral
angle STUV W with vertex S all the plane angles are equal and points K, L, M
and N lie on the bisectors of its plane angles, where

SK = SL = SM = SN.

Therefore, SA = SC and SD = SB, hence, AK = AL = CM = CN and BL =
BM = DN = DK. By the hypothesis, AC is also tangent to the ball, hence,

AC = AK + CN = 2AK.

Since SK is the bisector of angle DSA, it follows that

DK : KA = DS : SA = DB : AC.

Now, the equality AC = 2AK implies that DB = 2DK. Let P be the midpoint of
segment DB; then P lies on line SO. Triangles DOK and DOP are equal because
DK = DP and ∠DKO = 90◦ = ∠DPO. Therefore, OP = OK = R, where R is
the radius of the sphere; it follows that DB is also tangent to the sphere.

6.17. a) Let BC = a, CA = b, AB = c, DA = a1, DB = b1 and DC = c1.
Further, let G be the intersection point of the medians of triangle ABC, N the
intersections point of line DM with the circumscribed sphere, K the intersection
point of line AG with the circle circumscribed about triangle ABC.

First, let us prove that

AG ·GK =
a2 + b2 + c2

9
.

Indeed, AG · GK = R2 − O1G
2, where R is the radius of the circumscribed circle

of triangle ABC, where O1 is its center. But

O1G
2 = R2 − a2 + b2 + c2

9

(see $). Further,

DG ·GN = AG ·GK =
a2 + b2 + c2

9
hence,

GN =
a2 + b2 + c2

9m
,

where

(1) m = DG =

√
3(a2

1 + b2
1 + c2

1)− a2 − b2 − c2

3

(see Problem 6.3). Therefore,

DN = DG + GN = m +
a2 + b2 + c2

9m
=

a2
1 + b2

1 + c2
1

3m
.
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The fact that lines DM and OM are perpendicular is equivalent to the fact that
DN = 2DM , i.e., a2

1+b21+c2
1

3m = 3
2m. Expressing m according to formula (1) we get

the desired statement.
b) Let us make use of notations from heading a) and the result of a). Let

x = a2
1 + b2

1 + c2
1 and y = a2 + b2 + c2.

We have to verify that x = y. Further, let A1, B1 and C1 be the intersection points
of the medians of triangles DBC, DAC and DAB, respectively. The homothety
with center D and coefficient 3

2 sends the intersection point of the medians of trian-
gle A1B1C1 to the intersection point of the medians of triangle ABC. Therefore, M
is the intersection point of the extension of median DX of tetrahedron A1B1C1D
with the sphere circumscribed about this tetrahedron. Consequently, to compute
the length of segment DM , we may make use of the formula for DN obtained in
heading a):

DM =
DA2

1 + DB2
1 + DC2

1

3DX
.

Clearly, DX = 2m
3 . Expressing DA1, DB1 and DC1 in terms of medians and

medians in terms of sides we get

DA2
1 + DB2

1 + DC2
1 =

4x− y

9
.

Therefore, DM = 4x−y
18m .

On the other hand, DM = 3
4m; hence, 2(4x − y) = 27m2. By formula (1) we

have 9m2 = 3x− y, hence, 2(4x− y) = 3(3x− y), i.e., x = y.
6.18. Let CD = a. Then AC = a

sin α , BC = a
sin β and AB = a

√
cot2 α + cot2 β.

We get the desired statement by taking into account that

AB2 = AC2 + BC2 − 2AC ·BC cosϕ.

6.19. Let us consider the rectangular parallelepiped whose edges AB, AD and
AA1 are edges of the given tetrahedron. The segment that connects the midpoints of
segments AB and A1D is the parallel to midline BD1 of triangle ABD1; therefore,
the length of this segment is equal to 1

2d, where d is the length of the diagonal of
the parallelepiped.

6.20. Since
S2

ABC = S2
ABD + S2

BCD + S2
ACD

(see Problem 1.22), it follows that

SABC =
√

a2b2 + b2c2 + a2c2

2
.

Therefore, the volume of tetrahedron is equal to

h
√

a2b2 + b2c2 + a2c2

6
.

On the other hand, it is equal to 1
6abc. By equating these expressions we get the

desired statement.
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6.21. On rays AC and AD, take points P and R so that AP = AR = AB and
consider square APQR. Clearly,

4ABC = 4RQD and 4ABD = 4PQC;

hence, 4BCD = 4QDC. Thus, the sum of the plane angles at the vertex B is
equal to

∠PQC + ∠CQD + ∠DQR = ∠PQR = 90◦.

6.22. For each edge of tetrahedron there exists only one edge not neighbouring
to it and, therefore, among any three edges there are two neighbouring ones. Now,
notice that the three dihedral angles at edges of one face cannot be right ones.
Therefore, two variants of the disposition of the three edges whose dihedral angles
are right ones are possible:

1) These edges exit from one vertex;
2) Two edges exit from the endpoints of one edge.
In the first case it suffices to make use of the result of Problem 5.2.
Let us consider the second case: the dihedral angles at edges AB, BC and CD

are right ones. Then tetrahedron ABCD looks as follows: in triangles ABC and
BCD angles ACB and CBD are right ones and the angle between the planes of
these triangles is also a right one. In this case the angles ACB, ACD, ABD and
CBD are right ones.

6.23. Thanks to the solution of Problem 6.22 the following two variants are
possible.

1) All the plane angles at one vertex of the tetrahedron are right ones. But in
this case the lengths of all the segments that connect midpoints of the opposite
edges are equal (Problem 6.19).

2) The dihedral angles at edges AB, BC and CD are right ones. In this case
edges AC and BD are perpendicular to faces CBD and ABC, respectively. Let
AC = 2x, BC = 2y and BD = 2z. Then the length of the segment that connects
the midpoints of edges AB and CD as well as that of the segment that connects the
midpoints of edges BC and AD is equal to

√
x2 + z2 and the length of the segment

that connects the midpoints of edges AC and BD is equal to
√

x2 + 4y2 + z2.
Therefore,

x2 + z2 = a2 and x2 + 4y2 + z2 = b2.

The longest edge of tetrahedron ABCD is AD; its squared length is equal to

4(x2 + y2 + z2) = b2 + 3a2.

6.24. As follows from the solution of Problem 6.22, we may assume that the
vertices of the given tetrahedron are the vertices A, B, D and D1 of the rectangular
parallelepiped ABCDA1B1C1D1. Let α be the angle to be found; AB = a, AD = b
and DD1 = c. Then a = b tanα and c = b tan α. The cosine of the angle between
planes BB1D and ABC1 is equal to

ac√
a2 + b2

√
b2 + c2

=
tan2 α

1 + tan2 α
= sin2 α

(cf. Problem 1.9 a)). Therefore,

cosα = sin2 α = 1− cos2 α,
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i.e., cos α = −1±√5
2 . Since 1 +

√
5 > 2, we finally get α = arccos(

√
5−1
2 ).

6.25. a) Let AB = CD, AC = BD and the sum of the plane angles at vertex
A be equal to 180◦. Let us prove that AD = BC. To this end it suffices to verify
that ∠ACD = ∠BAC. But both the sum of the angles of triangle ACD and the
sum of the plane angles at vertex A are equal to 180◦; moreover, ∠DAB = ∠ADC
because 4DAB = 4ADC.

b) Let O1 and O2 be the tangent points of the inscribed sphere with faces ABC
and BCD. Then 4O1BC = 4O2BC. The conditions of the problem imply that
O1 and O2 are the centers of the circles circumscribed about the indicated faces.
Hence,

∠BAC =
∠BO1C

2
=

∠BO2C

2
= ∠BDC.

Similar arguments show that each of the plane angles at vertex D is equal to the
corresponding angle of triangle ABC and, therefore, their sum is equal to 180◦.
This statement holds for all the vertices of the tetrahedron. It remains to make use
of the result of Problem 2.32 a).

c) The angles ADB and ACB subtend equal chords in equal circles and, there-
fore, either they are equal or their sum is equal to 180◦.

First, suppose that for each pair of angles of the faces of the tetrahedron that
subtend the same edge the equality of angles takes place. Then, for example, the
sum of the plane angles at vertex D is equal to the sum of angles of triangle ABC,
i.e., is equal to 180◦. The sum of the plane angles at any vertex of the tetrahedron
is equal to 180◦ and, therefore, the tetrahedron is an equifaced one (see Problem
2.32 a)).

Now, let us prove that the case when the angles ADB and ACB are not equal is
impossible. Suppose that ∠ADB + ∠ACB = 180◦ and ∠ADB 6= ∠ACB. Let, for
definiteness, angle ∠ADB be an obtuse one. It is possible to “unfold” the surface
of tetrahedron ABCD to plane ABC so that the images Da, Db and Dc of point
D fall on the circle circumscribed about triangle ABC; in doing so we select the
direction of the rotation of a lateral face about the edge in the base in accordance
with the fact whether the angles that subtend this edge are equal (the positive
direction) or their sum is equal to 180◦ (the negative direction).

In the process of unfolding point D moves along the circles whose planes are
perpendicular to lines AB, BC and CA. These circles lie in distinct planes and,
therefore, any two of them have not more than two common points. But each pair
of these circles has two common points: point D and the point symmetric to it
through plane ABC. Therefore, points Da, Db and Dc are pairwise distinct.

Moreover, ADb = ADc, BDa = BDc and CDa = CDb. The unfolding now
looks as follows: triangle ADcB with obtuse angle Dc is inscribed in the circle;
from points A and B chords ADb and BDa equal to ADc and BDc, respectively,
are drawn; C is the midpoint of one of the two arcs determined by points Da and
Db. One of the midpoints of these two arcs is symmetric to point Dc through the
midperpendicular to segment AB; this point does not suit us.

The desired unfolding is depicted on Fig. 48. The angles at vertices Da, Db and
Dc of the hexagon ADcBDaCDb complement the angles of triangle ABC to 180◦

and, therefore, their sum is equal to 360◦. But these angles are equal to the plane
angles at vertex D of tetrahedron ABCD and, therefore, their sum is smaller than
360◦. Contradiction.
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Figure 48 (Sol. 6.25)

d) Let K and L be the midpoints of edges AB and CD, let O be the center
of mass of the tetrahedron, i.e., the midpoint of segment KL. Since O is the
center of the circumscribed sphere of the tetrahedron, triangles AOB and COD
are isosceles ones with equal lateral sides and equal medians OK and OL. Hence,
4AOB = 4COD and, therefore, AB = CD.

The equality of the other pairs of opposite edges is similarly proved.
6.26. The trihedral angles at vertices A and C have equal dihedral angles and,

therefore, they are equal (Problem 5.3). Consequently, their plane angles are also
equal; hence, 4ABC = 4CDA.

6.27. The center of mass of the tetrahedron lies on the plane that connects the
midpoints of edges AB and CD. Therefore, the center of the circumscribed sphere
of the tetrahedron lies on this line, too; hence, the indicated plane is perpendicular
to edges AB and CD. Let C ′ and D′ be the projections of points C and D,
respectively, to the plane passing through line AB parallel to CD. Since AC ′BD′

is a parallelogram, it follows that AC = BD and AD = BC.
6.28. Let K and L be the midpoints of edges AB and CD. The center of mass

of the tetrahedron lies on line KL and, therefore, the center of the inscribed sphere
also lies on line KL. Therefore, under the projection to the plane perpendicular
to CD segment KL goes into the bisector of the triangle which is the projection
of face ABC. It is also clear that the projection of point K is the midpoint of
the projection of segment AB. Therefore, the projections of segments KL and
AB are perpendicular, consequently, plane KDC is perpendicular to plane Π that
passes through edge AB parallel to CD. Similarly, plane LAB is perpendicular to
Π. Therefore, line KL is perpendicular to Π. Let C ′ and D′ be the projections
of points C and D, respectively, to plane Π. Since AC ′BD′ is a parallelogram,
AC = BD and AD = BC.

6.29. Let S be the midpoint of edge BC; let K, L, M and N be the midpoints
of edges AB, AC, DC and DB, respectively. Then SKLMN is a tetrahedral angle
with equal plane angles and its section KLMN is a parallelogram. On the one
hand, the tetrahedral angle with equal plane angles has a rhombus as a section
(Problem 5.16 b)); on the other hand, any two sections of the tetrahedral angle
which are parallelograms are parallel (Problem 5.16 a)).

Therefore, KLMN is a rhombus; moreover, from the solution of Problem 5.16
b) it follows that SK = SM and SL = SN . This means that AB = DC and
AC = DB. Therefore, 4BAC = 4ABD and BC = DB.
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6.30. The tangent point of the escribed sphere with plane ABC coincides with
the projection H of point Od (the center of the sphere) to plane ABC. Since the
trihedral angle OdABC is a right one, H is the intersection point of the heights of
triangle ABC (cf. Problem 2.11).

Let O be the tangent point of the inscribed sphere with face ABC. From the
result of Problem 5.13 b) it follows that the lines that connect points O and H
with the vertices of triangle ABC are symmetric through its bisectors. It is not
difficult to prove that this means that O is the center of the circle circumscribed
about triangle ABC (it suffices to carry out the proof for an acute triangle because
point H belongs to the face). Thus, the tangent point of the inscribed sphere with
face ABC coincides with the center of the circumscribed circle of the face; for the
other faces the proof of this fact is carried out similarly. It remains to make use of
the result of Problem 6.25 b).

6.31. Let us complement the given tetrahedron to a rectangular parallelepiped
(cf. Problem 6.48 a)); let x, y and z be the edges of this parallelpiped. Then

x2 + y2 = a2, y2 + z2 = b2 and z2 + x2 = c2.

Since R = d
2 , where d is the diagonal of the parallelepiped and d2 = x2 + y2 + z2,

it follows that

R2 =
x2 + y2 + z2

4
=

a2 + b2 + c2

8
.

By adding up equalities x2 + y2 = a2 and z2 + x2 + c2 and subtracting from them
the equality y2 + z2 = b2 we get

x2 =
a2 + c2 − b2

2
.

We similarly find x2 and z2. Since the volume of the tetrahedron is one third of
the volume of the parallelepiped (see the solution of Problem 3.4), we have

V 2 =
(xyz)2

9
=

(a2 + b2 − c2)(a2 + c2 − b2)(b2 + c2 − a2)
72

.

6.32. Let us complement the given tetrahedron to a rectangular parallelepiped
(see Problem 6.48 a)). The intersection point of the bisector planes of the dihedral
angles of the tetrahedron (i.e., the center of the inscribed ball) coincides with the
center O of the parallelepiped. By considering the projections to the planes per-
pendicular to the edges of the tetrahedron it is easy to verify that the distance from
the faces of the tetrahedron to the vertices of the parallelepiped distinct from the
vertices of the tetrahedron is twice that from point O. Hence, these vertices are
the centers of the escribed balls(spheres?). This proves both statements.

6.33. Let us complement the given tetrahedron to a rectangular parallelepiped.
Let AA1 be its diagonal, O its center. Point H1 is the projection of point A1 to face
BCD (cf. Problem 2.11) and the center O1 of the circumscribed circle of triangle
BCD is the projection of point O. Since O is the midpoint of segment AA1, points
H and H1 are symmetric through O1.

Let us consider the projection of the parallelepiped to the plane perpendicular to
BD, see Fig. 49; in what follows we make use of the notations from this figure rather
than notations of the body in space(?). The height CC ′ of triangle BCD is parallel
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Figure 49 (Sol. 6.33)

to the plane of the projection and, therefore, the lengths of segments BH1 and CH1

are equal to h1 and h2; the lengths of segments AH and A1H1 do not vary under the
projection. Since AH : A1H1 = AC : A1B = 2 and A1H1 : BH1 = CH1 : A1H1, it
follows that

AH2 = 4H1A
2
1 = 4h1h2.

6.34. Let us make use of the solution of the preceding problem and notations
from Fig. 49. On this Figure, P is the midpoint of height AH. It is easy to verify
that

OH = OH1 = OP =
√

r2 + a2,

where r is the distance from point O to the face and a the distance between the
center of the circumscribed circle and the intersection point of the heights of the
face.

6.35. a) Let e1, e2, e3 and e4 be unit vectors perpendicular to the faces and
directed outwards. Since the areas of all the faces are equal,

e1 + e2 + e3 + e4 = 0

(cf. Problem 7.19). Therefore,

0 = |e1 + e2 + e3 + e4|2 = 4 + 2
∑

(ei, ej).

It remains to notice that the inner product (ei, ej) is equal to − cosϕij , where ϕij

is the dihedral angle between the i-th and j-th faces.
b) On one edge of the given trihedral angle with vertex S, take an arbitrary point

A and draw from it segments AB and AC to the intersection with the other edges
so that ∠SAB = ∠ASC and ∠SAC = ∠ASB. Then 4SCA = 4ABS. Since the
sum of the angles of triangle ACS is equal to the sum of plane angles at vertex S,
it follows that ∠SCA = ∠CSB. Therefore, 4SCA = 4CSB; hence, tetrahedron
ABCS is an equifaced one. By heading a) the sum of the cosines of the dihedral
angles at the edges of this tetrahedron is equal to 2 and this sum is twice the sum
of the cosines of the dihedral angles of the given trihedral angle.

6.36. a) Let AD ⊥ BC. Then there exists plane Π passing through BC and
perpendicular to AD. The height dropped from vertex B is perpendicular to AD
and therefore, it lies in plane Π. Similarly, the height dropped from vertex C lies
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in plane Π. Therefore, these heights meet at a point. This point belongs also to
plane Π′ that passes through AD and is perpendicular to BC. It remains to notice
that planes Π and Π′ intersect along the common perpendicular to AD and BC.

b) Let heights BB′ and CC ′ meet at one point. Each of the heights BB′ and
CC ′ is perpendicular to AD. Therefore, the plane that contains these heights is
perpendicular to AD hence, BC ⊥ AD.

c) Let two pairs of opposite edges of the tetrahedron be perpendicular (to each
other). Then the third pair of the opposite edges is also perpendicular (Problem
7.1).

Therefore, each pair of the tetrahedron’s heights intersects. If several lines in-
tersect pairwise, then either they lie in one plane or pass through one point. The
heights of the tetrahedron cannot lie in one plane because otherwise all its vertices
would lie in one plane; hence, they meet at one point.

6.37. From solution of Problem 6.36 a) it follows that the intersection point of
the heights belongs to each common perpendicular to opposite pairs of edges.

6.38. a) Quadrilateral KLMN is a parallelogram whose sides are parallel to
AC and BD. Its diagonals, KM and LN , are equal if and only if it is a rectangle,
i.e., AC ⊥ BD.

Notice also that plane KLMN is perpendicular to the common perpendicular
to AC and BD and divides it in halves.

b) Follows from the results of Problems 6.38 a) and 6.36 c).
6.39. a) Since BC ⊥ AD, there exists plane Π passing through line AD and

perpendicular to BC; let U be the intersection point of line BC with plane Π. Then
AU and DU are perpendiculars dropped from points A and D to line BC.

b) Let AU and DU be heights of triangles ABC and DBC. Then line BC is
perpendicular to plane ADU and, therefore, BC ⊥ AD.

6.40. a) Follows from Problem 7.2.
b) Making use of the results of Problems 6.6 and 6.10 we see that the products

of the cosines of the opposite dihedral angles are equal if and only if the sums of
the squared lengths of the opposite edges are equal.

c) It suffices to verify that if all the angles between the opposite edges are equal
to α, then α = 90◦. Suppose that α 6= 90◦, i.e., cos α 6= 0. Let a, b and c be
the products of pairs of the opposite edges’ lengths. One of the numbers a cosα,
b cos α and c cosα is equal to the sum of the other two ones (Problem 6.51). Since
cos α 6= 0, one of the numbers a, b and c is equal to the sum of the other two.

On the other hand, there exists a triangle the lengths of whose sides are equal
to a, b and c (Problem 6.9). Contradiction.

6.41. a) If ABCD is an orthocentrical tetrahedron, then

AB2 + CD2 = AD2 + BC2

(cf. Problem 6.40 a)). Therefore,

AB2 + AC2 −BC2 = AD2 + AC2 − CD2,

i.e., the cosines of angles BAC and DAC are of the same sign.
b) Since a triangle cannot have two nonacute angles, it follows that taking into

account the result of heading a) we see that if ∠BAC ≥ 90◦, then triangle BCD is
an acute one.
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6.42. Let K and L be the midpoints of edges AB and CD, respectively. Point
H lies in the plane that passes through CD perpendicularly to AB and point
O lies in the plane that passes through K perpendicularly to AB. These planes
are symmetric through the center of mass of the tetrahedron, the midpoint M of
segment KL. Consider such planes for all the edges; we see that points H and O
are symmetric through M , hence, KHLO is a parallelogram.

The squares of its sides are equal to 1
4 (R2 −AB2) and 1

4 (R2 − CD2); hence,

OH2 = 2(R2 − AB2

4
) + 2(R2 − CD2

4
)− d2 = 4R2 − AB2 + CD2

2
− d2.

By considering the section that passes through M parallel to AB and CD we get
AB2 + CD2 = 4d2.

6.43. a) The circles of 9 points of triangles ABC and DBC belong to one sphere
if and only if the bases of the heights dropped from vertices A and D to line BC
coincide. It remains to make use of the result of Problem 6.39 b).

b) The segments that connect the midpoints of the opposite edges meet at one
point that divides them in halves — the center of mass; moreover, for an orthocen-
tric tetrahedron their lengths are equal (Problem 6.38 b)). Therefore, all the circles
of 9 points of the tetrahedron’s faces belong to the sphere whose diameter is equal
to the length of the segment that connects the midpoints of the opposite edges and
whose (sphere’s) center coinsides with the tetrahedron’s center of mass.

c) Both spheres pass through the midpoints of edges AB, BD, DC and CA and
these points lie in the indicated plane.

6.44. Let O, M and H be the center of the circumscribed sphere, the center
of mass and the intersection point of the heights of an orthocentric tetrahedron,
respectively. It follows from the solution of Problem 6.42 that M is the midpoint
of segment OH. The centers of mass of the tetrahedron’s faces are the vertices of
the tetrahedron homothetic to the given one with the center of homothety M and
coefficient − 1

3 . Under this homothety point O goes to point O1 that lies on segment
MH and MO1 = 1

3MO. Therefore, HO1 = 1
3HO, i.e., the homothety with center

H and coefficient 1
3 sends point O into O1. This homothety maps the vertices of

the tetrahedron into the indicated points on the heights of the tetrahedron.

Figure 50 (Sol. 6.44)

Thus, 8 of 12 given points lie on the sphere of radius 1
3R centered at O1, where

R is the radius of the circumscribed sphere of the tetrahedron. It remains to show
that the intersection points of the faces’ heights also belong to the sphere. Let O′,
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H ′ and M ′ be the center of the circumscribed sphere, the intersection point of the
heights and the center of mass of a face, respectively (Fig. 50). Point M ′ divides
segment O′H ′ in the ratio of O′M ′ : M ′H ′ = 1 : 2 (see Plane, Problem 10.1).

Now, it is easy to calculate that the projection of point O1 to the plane of
this face coincides with the midpoint of segment M ′H ′ and, therefore, point O1 is
equidistant from M ′ and H ′.

6.45. a) It follows from the solution of Problem 6.44 that under the homothety
with center H and coefficient 3 point M ′ turns into a point on the circumscribed
sphere of the tetrahedron.

b) It follows from the solution of Problem 6.44 that the homothety with center
M and coefficient −3 maps point H ′ to a point on the circumscribed sphere of the
tetrahedron.

6.46. Since AB ⊥ CD, there exists a plane passing through AB and perpen-
dicular to CD. On this plane lie both Monge’s point and the intersection point of
the heights dropped from vertices A and B. If we draw such planes through all the
edges, we see that they will have a unique common point.

6.47. Let us consider a tetrahedron in which the given segments connect the
midpoints of the opposite edges and complement it to a parallelepiped. The edges
of this parallelepiped are parallel to the given segments and its faces pass through
the endpoints of these segments. Therefore, this parallelepiped is uniquely deter-
mined by the given segments and there are precisely two tetrahedrons that can be
complemented to a given parallelepiped.

6.48. a) Two opposite edges of the tetrahedron serve as diagonals of the opposite
faces of the obtained parallelepiped. These faces are rectangulars if and only if the
opposite edges are equal.

The result of this heading is used in the solution of headings b)–d).
b) It suffices to notice that the given segments are parallel to the edges of the

parallelepiped.
c) Let the areas of all the faces of the tetrahedron be equal. Let us complement

tetrahedron AB1CD1 to the parallelepiped ABCDA1B1C1D1. Let us consider
the projection to the plane perpendicular to line AC. Since the heights of triangles
ACB1 and ACD1 are equal, the projection of triangle AB1D1 is an isosceles triangle
and the projection of point A1 is the midpoint of the base of the isosceles triangle.
Therefore, edge AA1 is perpendicular to face ABCD.

Similar arguments demonstrate that the parallelepiped is a rectangular one.
b) Let us make use of the notations of heading c) and consider again the pro-

jection to the plane perpendicular to AC. If the center of the inscribed sphere
coincides with the center of mass, then plane ACA1C1 passes through the center
of the inscribed sphere, i.e., is the bisector plane of the dihedral angle at edge AC.
Therefore, the projection maps segment AA1 to the bisector; hence, the median of
the image under the projection of triangle AB1D1 is perpendicular to face ABCD
and so is edge AA1.

6.49. Let us complement the equifaced tetrahedron to a parallelepiped. By
Problem 6.48 a) we get a rectangular parallelepiped. If the edges of the par-
alellepiped are equal to a, b and c, then the squared lengths of the sides of the
tetrahedron’s face are equal to a2 + b2, b2 + c2 and c2 + a2. Since the sums of the
squares of any two sides is greater than the square of the third side, the face is an
acute triangle.
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6.50. Let us complement the tetrahedron to a parallelepiped. The distances
between the midpoints of the skew edges of the tetrahedron are equal to the lengths
of the edges of this parallelepiped. It remains to make use of the fact that if a and
b are the lengths of the sides of the parallelepiped and d1 and d2 are the lengths of
its diagonals, then d2

1 + d2
2 = 2(a2 + b2).

6.51. Let us complement the tetrahedron to a parallelepiped. Then a and a1

are diagonals of the two opposite faces of the parallelepiped. Let m and n be the
sides of these faces and m ≥ n. By the law of cosines

4m2 = a2 + a2
1 + 2aa1 cos α; 4n2 = a2 + a2

1 − 2aa1 cosα;

therefore,
aa1 cosα = m2 − n2.

Write such equalities for numbers bb1 cos β and cc1 cos γ and compare; we get the
desired statement.

6.52. Let us complement tetrahedron ABCD to parallelepiped (Fig. 51). The
section of this parallelepiped by plane Π is a parallelogram; points M and N lie on
its sides and line l passes through the midpoints of the other two of its sides.

Figure 51 (Sol. 6.52)

6.53. Let AB1CD1 be the tetrahedron inscribed in cube ABCDA1BC1D1; let H
be the intersection point of diagonal AC1 with plane B1CD1; let M be the midpoint
of segment AH which serves as the tetrahedron’s height. Since C1H : HA = 1 : 2
(Problem 2.1), point M is symmetric to C1 through plane B1CD1.

6.54. If α is the angle between the planes of any of the lateral faces and the
plane of the base, h the height of the pyramid, then the distance from the projection
of the vertex to the plane of the base from any other plane that contains an edge
of the base is equal to h cot α.

Notice also that if there are equal dihedral angles at edges of the base not just
angles between planes, then the projection of the vertex is the center of the inscribed
circle.

6.55. Let h be the height of the pyramid, V its volume, S the area of the base.
By Problem 6.54, h = r tanα, where r is the radius of the circle inscribed in the
base. Hence,

V =
Sh

3
=

Sr tan α

3
=

S2 tan α

3p
=

(p− a)(p− b)(p− c) tan α

3
,
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where p = 1
2 (a + b + c).

6.56. Let line AM intersect BC at point P . Then

MA1 : SA = MP : AP = SMBC : SABC .

Similarly,

MB1 : SB = SAMC : SABC and MC1 : SC = SABM : SABC .

By adding up these equalities and taking into account that

SMBC + SAMC + SABM = SABC

we get the desired statement.
6.57. Let O be the center of the base of the cone. In the trihedral angles SBOC,

SCOA and SAOB, the dihedral angles at edges SB and SC, SC and SA, SA and
SB, respectively, are equal. Denote these angles by x, y and z. Then α = y + z,
β = z + x and γ = x + y. Since plane SCO is perpendicular to the plane tangent
to the surface of the cone along the generator SC, the angle to be found is equal to

π

2
− x =

π + α− β − γ

2
.

6.58. a) Let us drop from M perpendicular MO to plane ABC. Since the
distance from point A1 to plane ABC is equal to the distance from point A to plane
BC, the angle between the planes ABC and A1BC is equal to 45◦. Therefore, the
distance from point O to line BC is equal to the length of segment MO. Similarly,
the distances from point O to lines CA and AB are equal to the length of segment
MO and, therefore, O is the center of the inscribed circle of triangle ABC and
MO = r.

b) Let P be the intersection point of lines B1C and BC1. Then planes AB1C
and ABC1 intersect along line AP and planes A1BC1 and A1B1C intersect along
line A1P . Similar arguments show that the projection of point N to plane ABC
coincides with the projection of point M , i.e., it is the center O of the circle inscribed
in triangle ABC.

First solution. Let ha, hb and hc be the heights of triangle ABC; Q the
projection of point P to plane ABC. By considering trapezoid BB1C1C we deduce
that PQ = hbhc

hb+hc
. Since

AO : OQ = AB : BQ = (b + c) : a,

it follows that

NO =
aAA1 + (b + c)PQ

a + b + c
=

aha(hb + hc) + (b + c)hbhc

(a + b + c)(hb + hc)
=

4S

a + b + c
= 2r.

Second solution. Let K be the intersection point of line NO with plane
A1B1C1. From the solution of Problem 3.20 it follows that MO = 1

3KO and
NK = 1

3KO; hence, NO = 2MO = 2r.
6.59. Let p and q be the lengths of the sides of the bases of the pyramid.

Then the area of the lateral face is equal to 1
2a(p + q). Let us consider the section
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of the pyramid by the plane that passes through the center of the inscribed ball
perpendicularly to one of the sides of the base. This section is a circumscribed
trapezoid with lateral side a and bases p and q. Therefore, p + q = 2a. Hence, the
area of the lateral side of the pyramid is equal to 4a2.

6.60. Let Ni be the base of the perpendicular dropped from point M to the edge
of the base (or its extension) so that Mi lies in the plane of the face that passes
through this edge. Then

MMi = NiM tan α,

where α is the angle between the base and the lateral face of the pyramid. Therefore,
we have to prove that the sum of lengths of segments NiM does not depend on
point M . Let us divide the base of the pyramid into triangles by segments that
connect point M with vertices. The sum of the areas of these triangles is equal to

a

2
N1M + · · ·+ a

2
NnM,

where a is the length of the edge at the base of the pyramid. On the other hand,
the sum of the areas of these triangles is always equal to the area of the base.

6.61. If the sphere is tangent to the sides of the dihedral angle, then, after
the identification of these sides, the tangent points coincide. Therefore, all the
tangent points of the lateral faces with the inscribed sphere go under rotations
about edges into the same point — the tangent point of the sphere with the plane
of the pyramid’s base.

The distances from this point to the vertices of faces (after rotations) are equal
to the distances from the tangent points of the sphere with the lateral faces to the
vertex of the pyramid. It remains to notice that the lengths of all the tangents to
the sphere dropped from a vertex of the pyramid are equal.

6.62. Let us prove that all the lines indicated are parallel to the plane tangent
to the circumscribed sphere of the pyramid at its vertex. To this end it suffices
to verify that if AA1 and BB1 are the heights of triangle ABC, then line A1B1 is
parallel to the line tangent to the circumscribed circle of the triangle at point C.
Since

A1C : B1C = AC cos C : BC cos C = AC : BC,

it follows that 4A1B1C ∼ 4ABC. Therefore, ∠CA1B1 = ∠A. It is also clear that
the angle between the tangent to the circumscribed circle at point C and chord BC
is equal to ∠A.

6.63. First, let us suppose that the lateral edges of the pyramid form equal
angles with the indicated ray SO. Let the plane perpendicular to ray SO intersect
the lateral edges of the pyramid at points A1, B1, C1 and D1. Since SA1 = SB1 =
SC1 = SD1 and the areas of triangles BCD, ADB, ABC and ACD are equal, it
follows that making use of the result of Problem 3.37 we get the desired statement.

Now, suppose that SA + SC = SB + SD. On the lateral edges of the pyramid
draw equal segments SA1, SB1, SC1 and SD1. Making use of the result of Problem
3.37 it is easy to deduce that points A1, B1, C1 and D1 lie in one plane Π. Let S1

be the circumscribed circle of triangle A1B1C1, O its center, i.e., the projection of
vertex S to plane Π. Point D1 lies in plane Π and the distance from it to vertex S
is equal to the distance from points on circle S1 to vertex S. Therefore, point D1

lies on the circumscribed circle of triangle A1B1C1, i.e., ray SO is the desired one.
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6.64. Let line l intersect line AB1 at point K. The statement of the problem
is equivalent to the fact that planes KBC1, KCD1 and KDA1 have a common
line, in particular, they have a common point distinct from K. Let us draw a
plane parallel to the bases of the pyramid through point K. Let L, M and N be
the intersection points of this plane with lines BC1, CD1 and DA1, see Fig. 52
a); let A0B0C0D0 be the parallelogram along which this plane intersects the given
pyramid or the extensions of its edges. Points K, L, M and N divide the sides of the
parallelogram A0B0C0D0 in the same ratio, i.e., KLMN is also a parallelogram.
Planes KBC1 and KDA1 intersect plane ABCD along the lines that pass through
points B, C and D, respectively, parallel to lines KL, KM and KN , respectively.
It remains to prove that these three lines meet at one point.

Figure 52 (Sol. 6.64)

On sides of parallelogram ABCD, take points K ′, L′, M ′ and N ′ that divide
these sides in the same ratio in which points K, L, M and N divide the sides of
parallelogram A0B0C0D0. We have to prove that lines passing through points B,
C and D parallel to lines K ′L′, K ′M ′ and L′M ′, respectivley, meet at one point
(Fig. 52 b)).

Notice that the lines passing through vertices K ′, L′ and M ′ of triangle K ′L′M ′

parallel to lines BC, BD and CD intersect at point M symmetric to point M ′

through the midpoint of segment CD. Therefore, the lines passing through points
B, C and D parallel to lines K ′L′, K ′M ′ and L′M ′, respectively, also meet at one
point (see $).

Remark. Since a linear transformation makes the parallelogram ABCD into
a square, it suffices to prove the required statement for a square. If ABCD is a
square, then K ′L′M ′N ′ is also a square. It is easy to verify that the lines that pass
through points B, C and D parallel to lines K ′L′, K ′M ′ and K ′N ′, respectively,
meet at one point that lies on the circumscribed circle of the square ABCD.

6.65. If p is the semiperimeter of the base of the prism, r the radius of the
sphere, then the area of the base is equal to pr and the area of the lateral surface
is equal to 4pr. Therefore, the total surface area of the prism is equal to 6S.

6.66. a) Let M and N be the midpoints of edges PP1 and AA1. Clearly, tetra-
hedron AA1PP1 is symmetric through line MN . Further, let P ′ be the projection
of point P to the plane of face ACC1A1. Point P ′ lies on the projection B′B′

1 of
segment BB1 to this plane and divides it in the ratio of B′P ′ : P ′B′

1 = 1 : 2. There-
fore, P ′ is the midpoint of segment AP1. Therefore, planes APP1 and AA1P1 are
perpendicular to each other. Similarly, planes A1PP1 and AA1P are perpendicular.
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b) Since PP1N is the bisector plane of the dihedral angle at edge PP1 of the
tetrahedron AA1PP1, it suffices to verify that the sum of the dihedral angles at
edges PP1 and AP of tetrahedron APP1N is equal to 90◦.

Plane PP1N is perpendicular to face BCC1B1, therefore, we have to verify that
the angle between planes PP1A and BCC1B1 is equal to the angle between planes
PP1A and ABB1A1. These angles are equal because under the symmetry through
line PP ′ plane PP1A turns into itself and the indicated planes of the faces turn
into each other.
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CHAPTER 7. VECTORS AND

GEOMETRIC TRANSFORMATIONS

§1. Inner (scalar) product. Relations

7.1. a) Given a tetrahedron ABCD, prove that

({AB}, {CD}) + ({AC}, {DB}) + ({AD}, {BC}) = 0.

b) In a tetrahedron, prove that if two pairs of opposite edges are perpendicular,
then the third pair of opposite edges is also perpendicular.

7.2. Prove that the sum of squared lengths of two opposite pairs of a tetrahe-
dron’s edges are equal if and only if the third pair of opposite edges is perpendicular.

7.3. The diagonal AC1 of rectangular parallelepiped ABCDA1B1C1D1 is per-
pendicular to plane A1BD. Prove that this parallelepiped is a cube.

7.4. In a regular truncated pyramid, point K is the midpoint of side AB of the
upper base, L is the midpoint of side CD of the lower base. Prove that the lengths
of projections of segments AB and CD to line KL are equal.

7.5. Given a trihedral angle with vertex S, point N , and a sphere that, passing
through points S and N , intersects the edges of the trihedral angle at points A, B
and C. Prove that the centers of mass of triangles ABC for various spheres belong
to one plane.

7.6. Prove that the sum of the distances from an inner point of a convex poly-
hedron to the planes of its faces does not depend on the position of the point if
and only if the sum of the outer unit vectors perpendicular to the faces faces of the
polyhedron is equal to zero.

7.7. Prove that in an orthocentric tetrahedron the center of mass is the midpoint
of the segment that connects the orthocenter with the center of the circumscribed
sphere.

§2. Inner product. Inequalities

7.8. Prove that it is impossible to select more than 4 vectors in space all the
angles between which are obtuse ones.

7.9. Prove that it is impossible to select more than 6 vectors in space all the
angles between which are not acute ones.

7.10. Prove that the sum of the cosines of the dihedral angles in a tetrahedron
is positive and does not exceed 2.

7.11. Inside a convex polyhedron A1 . . . An, a point A is taken and inside a
convex polyhedron B1 . . . Bn a point B is taken. Prove that if ∠AiAAj ≤ ∠BiBBj

for all i, j, then all these inequalities are, actually, equalities.

§3. Linear dependence of vectors

7.12. Points O, A, B and C do not lie in one plane. Prove that point X lies in
plane ABC if and only if

{OX} = p{OA}+ q{OB}+ r{OC},
Typeset by AMS-TEX
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where
p + q + r = 1.

Moreover, if point X belongs to triangle ABC, then

p : q : r = SBXC : SCXA : SAXB .

7.13. On edges AB, AC and AD of tetrahedron ABCD, points K, L and M
are fixed. We have AB = αAK, AG = βAL and AD = γAM .

a) Prove that if
γ = α + β + 1,

then all planes KLM contain a fixed point.
b) Prove that if

β = α + 1 and γ = β + 1,

then all the planes KLM contain a fixed line.
7.14. Two regular pentagons OABCD and OA1B1C1D1 with common vertex

O do not lie in one plane. Prove that lines AA1, BB1, CC1 and DD1 are parallel
to one plane.

7.15. a) Inside tetrahedron ABCD a point O is taken. Prove that if

α{OA}+ β{OB}+ γ{OC}+ δ{OD} = {0},

then all the numbers α, β, γ and δ are of the same sign.
b) From point O inside a tetrahedron perpendiculars {OA1}, {OB1}, {OC1}

and {OD1} are dropped to the tetrahedron’s faces. Prove that if

α{OA1}+ β{OB1}+ γ{OC1}+ δ{OD1} = {0},

then all the numbers α, β, γ and δ are of the same sign.
7.16. Point O lies inside polyhedron A1 . . . An. Prove that there exist positive

(and, therefore, nonzero) numbers x1, . . . , xn such that

x1{OA1}+ · · ·+ xn{OAn} = {0}.

§4. Miscellaneous problems

7.17. Let a, b, c and d be unit vectors directed from the center of a regular
tetrahedron to its vertices and u an arbitrary vector. Prove that

(a,u)a + (b,u)b + (c,u)c + (d,u)d =
4
3
u.

7.18. From point M inside a regular tetrahedron perpendiculars MAi (i = 1, 2,
3, 4) are dropped to its faces. Prove that

{MA1}+ {MA2}+ {MA3}+ {MA4} =
4
3
{MO},

where O is the center of the tetrahedron.
7.19. From a point O inside a convex polyhedron rays that intersect the planes of

the polyhedron’s faces and perpendicular to them are drawn. On these rays, vectors
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are drawn from point O, the lengths of these vectors measured in chosen linear units
are equal to the areas of the corresponding faces measured in the corresponding area
units. Prove that the sum of these vectors is equal to zero.

7.20. Given three pairwise perpendicular lines the distance between any two of
which is equal to a. Find the volume of the parallelepiped whose diagonal lies on
one of the lines and diagonals of two neighbouring faces on the two other lines.

7.21. Let a, b, c and d be arbitrary vectors. Prove that

|a|+ |b|+ |c|+ |a + b + c| ≥ |a + b|+ |b + c|+ |c + a|.

§5. Vector product

The vector product of two vectors a and b is the vector c whose length measured
in chosen linear units is equal to the area of the parallelogram formed by vectors a
and b measured in the corresponding area units, which is perpendicular to a and
b, and which is directed in such a way that the triple a, b and c is a “right” one.

Recall that the triple of vectors a, b, c is a “right” one if the orientation of the
triple is the same as that of a thumb (a), index finger (b) and the middle finger (c)
of the right hand. Notation: c = [a,b]; another notation: c = a× b.

7.22. Prove that
a) [a,b] = −[b,a];
b) [λa, µb] = λ[a,b];
c) [a,b + c] = [a,b] + [a, c].
7.23. The coordinates of vectors a and b are (a1, a2, a3) and (b1, b2, b3). Prove

that the coordinates of [a,b] are

(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

7.24. Prove that
a) [a, [b, c]] = b(a, c)− c(a,b);
b) ([a,b], [c,d]) = (a, c)(b,d)− (b, c)(a,d).
7.25. a) Prove that (the Jacobi identity):

[a, [b, c]] + [b, [c,a]] + [c, [a,b]] = 0.

b) Let point O lie inside triangle ABC and a = {OA}, b = {OB} and c = {OC}.
Prove that the Jacobi identity for vectors a, b and c is equivalent to the identity

aSBOC + bSCOA + cSOAB = 0.

7.26. The angles at the vertices of a spatial hexagon are right ones and the
hexagon has no parallel sides. Prove that the common perpendiculars to the pairs
of the opposite sides of the hexagon are perpendicular to one line.

7.27. Prove with the help of vector product the statement of Problem 7.19 for
tetrahedron ABCD.

7.28. a) Prove that the planes passing through the bisectors of the faces of
trihedral angle SABC perpendicularly to the planes of these faces intersect along
one line and this line is determined by the vector

[a,b] + [b, c] + [c,a],
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where a, b and c are unit vectors directed along edges SA, SB and SC, respectively.
b) On the edges of a trihedral angle with vertex O points A1, A2 and A3 are

taken (one on each edge) so that OA1 = OA2 = OA3. Prove that the bisector
planes of its dihedral angles intersect along one line determined by the vector

{OA1} sin α1 + {OA2} sinα2 + {OA3} sin α3,

where αi is the value of the plane angle opposite to edge OAi.
7.29. Given parallelepiped ABCDA1B1C1D1, prove that the sum of squares of

the areas of three of its pairwise nonparallel faces is equal to the sum of squares of
areas of faces of the tetrahedron A1BC1D.

The number ([a,b], c) is called the mixed product of vectors a, b and c. It is
easy to verify that the absolute value of this number is equal to the volume of the
parallelepiped formed by vectors a, b and c and this number is positive if a, b and
c is a right triple of vectors and negative otherwise.

7.30. Prove that vectors with coordinates (a1, a2, a3), (b1, b2, b3) and (c1, c2, c3)
are parallel to one plane if and only if

a1b2c3 + a2b3c1 + a3b1c2 = a1b3c2 + a2b1c3 + a3b2c1.

Remark. For those acquainted with the notion of the product of matrices we
can elucidate the relation between the vector product and the commutator of two
matrices. To every vector a = (a1, a2, a3) in three-dimensional space we can assign
the skew-symmetric matrix

A =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

Let matrices A and B be assigned to vectors a and b. Consider the matrix
[A,B] = AB − BA, the commutator of matrices A and B. Easy calculations
demonstrate that the matrix [A,B] corresponds to the vector [a,b].

§6. Symmetry

The symmetry through point A is the transformation of the space that sends point
X into point X ′ such that A is the midpoint of segment XX ′. Other names for
this transformation are the central symmetry with center A or just the symmetry
with center A.

7.31. Given a tetrahedron and point N , through every edge of the tetrahedron
a plane is drawn parallel to the segment that connects point N with the midpoint
of the opposite edge. Prove that all these six planes intersect at one point.

7.32. a) Through the midpoint of each edge of a tetrahedron the plane perpen-
dicular to the opposite edge is drawn. Prove that all the six such planes intersect
at one point. (Monge’s point.)

b) Prove that if Monge’s point lies in the plane of a face of the tetrahedron, then
the base of the height dropped to this face lies on the circle circumscribed about
this face.

The symmetry through plane Π is a transformation of the space that sends point
X to point X ′ such that plane Π passes through the midpoint of segment XX ′

perpendicularly to it.
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Figure 53 (7.33)

7.33. Three equal right pentagons are situated in space so that they have a
common vertex and every two of them have a common edge. Prove that segments
depicted on Fig. 53 by solid lines are the edges of a right trihedral angle.

7.34. Given two intersecting planes and a sphere tangent to them. All the
spheres tangent to these planes and the given sphere are considered. Find the locus
of the tangent points of these spheres.

7.35. Let O be the center of the cylinder (i.e., the midpoint of its axis), AB a
diameter of one of the bases, C the point on the circle of the other base. Prove that
the sum of dihedral angles of the trihedral angle OABC with vertex O is equal to
2π.

7.36. In a convex pentahedral pyramid SABCDE, the lateral edges are equal
and the dihedral angles at the lateral edges are equal. Prove that this pyramid is
a regular one.

7.37. What maximal number of planes of symmetry a spatial figure consisting
of three pairwise nonparallel lines can have?

The symmetry through line l is a transformation of the space that sends point
X to a point X ′ such that line l passes through the midpoint of segment XX ′

perpendicularly to it. This transformation is also called the axial symmetry and l
the axis of the symmetry.

7.38. Prove that symmetry through the line determined by vector b sends vector
a to vector

2b
(a,b)
(b,b)

− a.

7.39. Perpendicular lines l1 and l2 intersect at one point. Prove that the com-
position of symmetries through these lines is a symmetry through the line perpen-
dicular to both of them.

7.40. Prove that no body in space can have a nonzero even number of axes of
symmetry.

§7. Homothety

Fix point O in space and number k. A homothety is the transformation of the
space that sends point X to point X ′ such that {OX ′} = k{OX} Point O is called
the center of the homothety and k the coefficient of homothety.

7.41. Let r and R be the radii of the inscribed and circumscribed spheres of a
tetrahedron. Prove that R ≥ 3r.
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7.42. In the plane of a lateral face of a regular quadrilateral pyramid an arbitrary
figure Φ is taken. Let Φ1 be the projection of Φ to the base of the pyramid and Φ2

the projection of Φ1 to a lateral face adjacent to the initial one. Prove that figures
Φ and Φ2 are similar.

7.43. Prove that inside any convex polyhedron M two polyhedrons similar to it
with coefficient 1

2 can be placed so that they do not intersect.
7.44. Prove that a convex polyhedron cannot be covered with three polyhedrons

homothetic to it with coefficient k, where 0 < k < 1.
7.45. Given triangle ABC in plane, find the locus of points D in space such that

segment OM , where O is the center of the sphere circumscribed about tetrahedron
ABC and M is the center of mass of this tetrahedron, is perpendicular to plane
ADM .

§8. Rotation. Compositions of transformations

We will not give a rigorous definition of a rotation about line l. For the solution
of the problems to follow it suffices to have the following idea about a rotation:
a rotation about line l (or about axis l) through an angle of ϕ is a transformation
of the space that sends every plane Π perpendicular to l into itself and in Π this
transformation is a rotation with center O through an angle of ϕ, where O is the
intersection point of Π with l. In other words, under the rotation through an angle
of ϕ about l point X turns into a point X ′ such that:

a) perpendiculars dropped from points X and X ′ to l have a common base O;
b) OX = OX ′;
c) the angle of rotation from vector {OX} to vector {OX ′} is equal to ϕ.
7.46. Let A′i and A′′i be the projections of the vertices of tetrahedron A1A2A3A4

to planes Π′ and Π′′. Prove that one of these planes can be moved in space so that
the four lines A′iA

′′
i becomes parallel.

The composition of transformations F and G is the transformation G ◦ F that
sends point X to point G(F (X)). Observe that, generally, G ◦ F 6= F ◦G.

7.47. Prove that the composition of symmetries through two planes that inter-
sect along line l is a rotation about l and the angle of this rotation is twice the
angle of the rotation about l that sends the first plane into the second one.

7.48. Prove that the composition of the symmetry through point O with the
rotation about line l passing through O is equal to the composition of a rotation
about l and the symmetry through plane Π passing through point O perpendicularly
to l.

A motion of space is a transformation of space such that if A′ and B′ are the
images of points A and B, then AB = A′B′. In other words, a motion is a trans-
formation of the space that preserves distances.

One can show that a motion that preserves four points in space not in one plane
preserves the other points of the space as well. Therefore, any motion is given by
the images of any four points not in one plane.

7.49. a) Prove that any motion of space is the composition of not more than
four symmetries through planes.

b) Prove that any motion of space with a fixed point O is the composition of not
more than three symmetries through planes.

A motion which is the composition of an even number of symmetries through
planes is called a motion of the first kind or a motion that preserves orientation
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of the space. A motion which is the composition of an odd number of symmetries
through planes is called a motion of the second kind or a motion that changes the
orientation of the space.

We will not prove that the composition of an even number of symmetries with
respect to planes cannot be represented in the form of the composition of an odd
number of symmetries with respect to planes (though this is true).

7.50. a) Prove that any motion of the first kind with the fixed point is a rotation
through an axis.

b) Prove that any motion of the second kind with the fixed point is the com-
position of a rotation through an axis (perhaps, through the zero angle) and the
symmetry through a plane perpendicular to this axis.

7.51. A ball that lies in a corner of a parallelepipedal box rolls along the bottom
of the box into another corner so that it is one and the same point on the ball that
always touches the wall. From the second corner the ball rolls to the third one,
then to the fourth one and, finally, returns to the initial corner. As a result, point
X on the surface of the ball turns into point X1. After similar rolling, point X1

turns into X2 and X2 turns into X3. Prove that points X, X1, X2 and X3 lie in
one plane.

§9. Reflexion of the rays of light

7.52. A ray of light enters a right trihedral angle, is reflected from all the faces
once and then exits the trihedral angle. Prove that when the ray exits it goes
along the line parallel to the line it entered the trihedral angle but in the opposite
direction.

7.53. A ray of light falls on a flat mirror under an angle of α. The mirror
is rotated through an angle of β about the projection of the ray to the mirror.
Through which angle will the reflected ray move after the rotation of the mirror?

7.54. Plane Π passes through the vertex of a cone perpendicularly to its axis;
point A lies in plane Π. Let M be a point of the cone such that the ray of light
that goes from A to M becomes parallel to plane Π after being reflected from the
surface of the cone as from the mirror. Find the locus of projections of points M
to plane Π.

Problems for independent study

7.55. Point X lies at distance d from the center of a regular tetrahedron. Prove
that the sum of squared distances from point X to the vertices of the tetrahedron
is equal to 4(R2 + d2), where R is the radius of the circumscribed sphere of the
tetrahedron.

7.56. On edges DA, DB and DC of tetrahedron ABCD points A1, B1 and C1,
respectively, are taken so that DA1 = αDA, DB1 = βDB and DC1 = γDC. In
which ratio plane A1B1C1 divides segment DD′, where D′ is the intersection point
of the medians of face ABC?

7.57. Let M and N be the midpoints of edges AB and CD of tetrahedron
ABCD. Prove that the midpoints of segments AN , CM , BN and DM are the
vertices of a parallelogram.

7.58. Let O be the center of the sphere circumscribed about an orthocentric
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tetrahedron, H its orthocenter. Prove that

{OH} =
1
2
({OA}+ {OB}+ {OC}+ {OD}).

7.59. Point X lies inside a regular tetrahedron ABCD with center O. Prove that
among the angles with vertex at point X that subtend the edges of the tetrahedron
there is an angle whose value is not less than that of angle ∠AOB and an angle
whose value is not greater than that of angle ∠AOB.

Solutions

7.1. a) Let a = {AB}, b = {BC}, c = {CD}. Then

({AB}, {CD}) = (a, c),
({AC}, {DB}) = (a + b,−b− c) = −(a,b)− (b,b)− (b, c)− (a, c),

({AD}, {BC}) = (a + b + c,b) = (a,b) + (b,b) + (c,b).

Adding up these equalities we get the desired statement.
b) Follows obviously from heading a).
7.2. Let a = {AB}, b = {BC} and c = {CD}. The equality

AC2 + BD2 = BC2 + AD2

means that
|a + b|2 + |b + c|2 = |b|2 + |a + b + c|2,

i.e., (a, c) = 0.
7.3. Let a = {AA1}, b = {AB} and c = {AD}. Then {AC1} = a + b + c and,

therefore, vector a + b + c is perpendicular to vectors a − b, b − c and c − a by
the hypothesis. Taking into account that (a,b) = (b, c) = (c,a) = 0 we get

0 = (a + b + c,a− b) = a2 − b2.

Similarly, b2 = c2 and c2 = a2. Therefore, the lengths of all the edges of the given
rectangular parallelepiped are equal, i.e., this parallelepiped is a cube.

7.4. If vector z lies in the plane of the upper (or lower) base, then we will
denote by Rz the vector obtained from z by rotation through an angle of 90◦

(in that plane) in the positive direction. Let O1 and O2 be the centers of the
upper and lower bases; {O1K} = a and {O1L} = b. Then {AB} = kRa and
{CD} = kRb. We have to verify that |({KL}, {AB})| = |({KL}, {CD})|, i.e.,
|(b − a + c, kRa)| = |(b − a + c, kRb)|, where c = {O1O2}. Taking into account
that the inner product of perpendicular vectors is equal to zero we get

(b− a + c, kRa) = k(b, Ra) and (b− a + c, kRb) = −k(a, Rb).

Since under the rotation of both vectors through an angle of 90◦ their inner product
does not vary and R(Ra) = −a, it follows that

(b, Ra) = (Rb,−a) = −(a, Rb).
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7.5. Let O be the center of the sphere; M the center of mass of triangle ABC;
u = {SO}; let a, b and c be unit vectors directed along the edges of the trihedral
angle. Then

3{SM} = {SA}+ {SB}+ {SC} = 2((u,a)a + (u, b)b + (u, c)c).

The center O of the sphere belongs to the plane that passes through the midpoint
of segment SN perpendicularly to it. Hence, u = e1 + λe2 + µe3, where e1, e2 and
e3 are certain fixed vectors. Therefore,

3{SM} = 2(ε1 + λε2 + µe3), where εi = (ei,a)a + (ei,b)b + (ei, c)c.

7.6. Let n1, . . . , nk be the unit outer normals to the faces; M1, . . . , Mk

arbitrary points on these faces. The sum of the distances from an inner point X of
the polyhedron to all the faces is equal to

∑
({XMi},ni) =

∑
({XO},ni) +

∑
({OMi},ni),

where O is a fixed inner point of the polyhedron. This sum does not depend on X
only if ∑

({XO},ni) = 0, i.e.,
∑

ni = 0.

7.7. Let O be the center of the circumscribed sphere of the orthocentric tetra-
hedron, H its orthocenter and M the center of mass.

Clearly, {OM} = 1
4 ({OA} + {OB} + {OC} + {OD}). Therefore, it suffices

to verify that {OH} = 1
2 ({OA} + {OB} + {OC} + {OD}). Let us prove that if

{OX} = 1
2 ({OA}+ {OB}+ {OC}+ {OD}), then H is the orthocenter.

Let us prove, for instance, that AX ⊥ CD. Clearly,

{AX} = {AO}+ {OX} =
−{OA}+ {OB}+ {OC}+ {OD}

2
=

{AB}+ {OC}+ {OD}
2

.

Hence,

2({CD} < {AX}) = ({CD}, {AB}+ {OC}+ {OD}) = ({CD},
{AB}) + (−{OC}+ {OD}, {OC}+ {OD}).

Both summands are equal to zero: the first one because CD ⊥ AB and the second
one because OC = OD. We similarly prove that AX ⊥ BC, i.e., line AX is
perpendicular to face BCD.

For lines BX, CX and DX the proof is similar.
7.8. First solution. Let several rays with common origin O and forming

pairwise obtuse angles be arranged in space. Let us introduce a coordinate system
directing Ox-axis along the first ray and selecting for the coordinate plane Oxy the
plane that contains the first two rays.

Each ray is determined by a vector e and instead of e we can as well take λe,
where λ > 0. The first ray is given by vector e1 = (1, 0, 0) and the k-th ray by vector
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ek = (xk, yk, zk). For k > 1 the inner product of vectors e1 and ek is negative;
hence, xk < 0. We may assume that xk = −1.

Further, for k > 2 the inner product of vectors e2 and ek is negative. Taking
into account that z2 = 0 thanks to the choice of the coordinate plane Oxy, we get
(e2, ek) = 1 + y2yk < 0. Therefore, all the numbers yk for k > 2 are of the same
sign (opposite to the sign of y2). Now, make use of the fact that

(ei, ej) = 1 + yiyj + zizj < 0 for i, j ≥ 3 and i 6= i.

Clearly, yiyj > 0; therefore, zizj < 0. Since there are no three numbers of distinct
signs, only two vectors distinct from the first two vectors e1 and e2 can exist.

Second solution. First, let us prove that if

λ1e1 + · · ·+ λkek = λk+1ek+1 + · · ·+ λnen,

where all the numbers λ1, . . . , λn are positive and 1 ≤ k < n, then not all the
angles between the vectors ei are obtuse. Indeed, the squared length of vector
λ1e1 + · · ·+ λkek is equal to

(λ1e1 + · · ·+ λkek, λk+1ek+1 + · · ·+ λnen)

and if all the angles between the vectors ei are obtuse, then this inner product is
the sum of negative numbers.

Now, suppose that there exist vectors e1, . . . , e5 in space all the angles between
which are obtuse. Clearly, these vectors cannot be parallel to one plane; let for
example, vectors e1, e2 and e3 be not parallel to one plane. Then

e4 = λ1e1 + λ2e2 + λ3 + e3; e5 = µ1e1 + µ2e2 + µ3e3.

Let us subtract the second equality from the first one and rearrange the obtained
equality so that in its right- and left-hand sides the vectors with positive coefficients
would stand; then in the left-hand side e4 stands and in the right-hand side e5

stands. Contradiction.
7.9. Suppose that the angles between vectors e1, . . . , e7 are not acute ones. Let

us direct Ox-axis along vectors e1. No plane perpendicular to e1 can have more
than four vectors the angles between which are not acute; together with vector −e1

we get the total of only six vectors. Therefore, we can select a vector e2 and direct
the Oy-axis so that e2 = (x2, y2, 0), where x2 6= 0 (and, therefore, x2 < 0) and
y2 > 0.

Let ek = (xk, yk, zk) for k = 3, . . . , 7. Then xk ≤ 0 and xkx2 +yky2 ≤ 0. Hence,
xkx2 ≥ 0 and, therefore, yky2 ≤ 0, i.e., yk ≤ 0. Since (es, er) ≤ 0 for 3 ≤ s, r ≤ 7
and xrxs ≥ 0, yrys ≥ 0, it follows that zszr ≤ 0. But among the five numbers z3,
. . . , z7 there are not more than two zero ones, hence, among the three remaining
numbers there are necessarily two numbers of the same sign. Contradiction.

7.10. Let e1, e2, e3 and e4 be unit vectors perpendicular to faces and directed
outwards; n = e1 +e2 +e3 +e4; s the indicated sum of the cosines. Since (ei, ej) =
− cosϕij , where ϕij is the angle between the i-th and j-th faces then |n|2 = 4− 2s.
Now the inequality s ≤ 2 is obvious. It remains to verify that s > 0, i.e., |n| ≤ 2.

There exist nonzero numbers α, β, γ and δ such that αe1 +βe2 +γe3 + δe4 = 0.
Let, for definiteness, the absolute value of δ be the largest among these numbers.
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Dividing the given equality by δ we may assume that δ = 1. Then numbers α,
β and γ are positive (cf. Problem 7.15 b)) and do not exceed 1. Since

n = n− αe1 − βe2 − γe3 − e4 = (1− α)e1 + (1− β)e2 + (1− γ)e3,

it follows that

|n| ≤ 1− α + 1− β + 1− γ = 3− (α + β + γ).

It remains to notice that

1 = |e4| = |αe1 + βe2 + γe3| ≤ α + β + γ

and the equality cannot take place because the given vectors are not colinear.
7.11. Let vectors ai and bi be codirected with rays AAi and Bbi and are of unit

length. By Problem 7.16 there exist positive numbers x1, . . . , xn such that

x1a1 + · · ·+ xnan = 0.

Consider vector
b = x1b1 + · · ·+ xnbn.

Since (bi,bj) ≤ (ai,aj), it follows that by the hypothesis

|b|2 =
∑

x2
i + 2

∑

i<j

xixj(bi,bj) ≤
∑

x2
i + 2

∑

i<j

xixj(ai,aj) =

= |x1a1 + · · ·+ xnan|2 = 0.

If at least one of the inequalities (bi,bj) ≤ (ai,aj) is a strict one, we get a strict
inequality |b|2 < 0 which is impossible.

7.12. Point X lies in plane ABC if and only if {AX} = λ{AB}+ µ{AC}, i.e.,

{OX} = {OA}+ {AX} = {OA}+ λ{AB}+ µ{AC} =

{OA}+ λ({OB} − {OA}) + µ({OC} − {OA}) =

(1− λ− µ){OA}+ λ{OB}+ µ{OC}.

Let point X belong to triangle ABC. Let us prove that, for example, λ = SCXA :
SABC . The equality {AX} = λ{AB}+ µ{AC} means that the ratio of the heights
dropped from points X and B to line AC is equal to λ and the ratio of these heights
is equal to SCXA : SABC .

7.13. Let a = {AB}, b = {AC} and c = {AD}. Further, let X be an arbitrary
point and {AX} = λa + µb + νc. Point X belongs to plane KLM if

{AX} = p{AK}+ q{AL}+ r{AM} =
p

α
a +

q

β
b +

r

γ
c, where p + q + r = 1

(cf. Problem 7.12), i.e.,
λα + µβ + νγ = 1.
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a) We have to select numbers λ, µ and ν so that for any α and β we would have
had

λα + µβ + ν(α + β + 1) = 1,

i.e.,
λ + ν = 0, µ + ν = 0 and ν = 1.

b) Point X belongs to all the considered planes if

λ(β − 1) + µβ + ν(β + 1) = 1 for all β,

i.e.,
λ + µ + ν = 0 and ν − λ = 1.

Such points X fill in a straight line.
7.14. Let {OC} = λ{OA} + µ{OB}. Then, since the regular pentagons are

similar, {OC1} = λ{OA1}+ µ{OB1} and, therefore, {CC1} = λ{AA1}+ µ{BB1},
i.e., line CC1 is parallel to plane Π that contains {AA1} and {BB1}.

We similarly prove that line DD1 is parallel to plane Π.
7.15. a) In equality

α{OA}+ β{OB}+ γ{OC}+ δ{OD} = {0},

let us transport all the summands with the negative coefficients to the right-hand
side. If p, q and r are positive numbers, then the endpoint of vector p{OP}+q{OQ}
lies inside angle POQ and the endpoint of vector p{OP} + q{OQ} + r{OR} lies
inside the trihedral angle OPQR with vertex O. It remains to notice that, for
example, edge CD lies outside angle AOB and vertex D lies outside the trihedral
angle OABC.

b) Since point O lies inside tetrahedron A1B1C1D1, we may make use of the
solution of heading a).

7.16. Let the extension of ray OAi beyond point O intersect the polyhedron at
point M ; let P be one of the vertices of the edge that contains point M ; let QR be
the side of this face that intersects with the extension of ray MP beyond point M .
Then

{OM} = p{OP}+ q{OQ}+ r{OR}, where p, q, r ≥ 0.

Since vectors {OAi} and {OM} have opposite directions,

{OAi}+ α{OP}+ β{OQ}+ γ{OR} = {0},

where α, β, γ ≥ 0 and P , Q, R are some vertices of the polyhedron.
Write such equalities for all i from 1 to n and add them; we get the desired

statement.
7.17. First solution. Any vector u can be represented in the form u =

αa + βb + γc; therefore, it suffices to carry out the proof for vectors a, b and c.
Since the center of a regular tetrahedron divides its median in the ratio of 1 : 3, we
have

(a,b) = (a, c) = (a,d) = −1
3
.



SOLUTIONS 113

Taking into account that a + b + c + d = 0 we get

(a,a)a + (a,b)b + (a, c)c + (a,d)d == a− 1
3
(b + c + d) = a +

1
3
a =

4
3
a.

For vectors b and c the proof is similar.
Second solution. Consider cube ABCDA1B1C1D1. Clearly, AB1CD1 is a

regular tetrahedron. Introduce a rectangular coordinate system with the origin at
the center of the cube and the axes parallel to the edges of the cube. Then
√

3a = (1, 1, 1),
√

3b = (−1,−1, 1),
√

3c = (−1, 1,−1) and
√

3d = (1,−1,−1).

Let u = (x, y, z). Easy but somewhat cumbersome calculations lead us now to the
desired result.

7.18. Let us drop perpendiculars OBi from point O to the faces of the tetrahe-
dron. Let ai be a unit vector directed as {OBi}. Then ({OM},ai)ai + {MAi} =
{OBi}. Since tetrahedron B1B2B3B4 is a regular one, the sum of vectors {OBi}
is equal to zero. Therefore,

∑
{MAi} =

∑
({MO},ai)ai =

4{MO}
3

(see Problem 7.17).
7.19. First solution. Prove that the sum of the projections of all the given

vectors to any line l is equal to zero. To this end consider the projection of the
polyhedron to the plane perpendicular to line l. The projection of the polyhedron
is covered by the projections of its faces in two coats since the faces can be divided
into two types: “visible from above” and “visible from below” (we can disregard
the faces whose projections are segments). Ascribe the “plus” sign to projections
of the faces of one type and the “minus” sign to the projections of the other type
we see that the sum of the signed areas of the projections of the faces is equal to
zero.

Now, notice that the area of the projection of the face is equal to the length of
the projection of the corresponding vector to line l (cf. Problem 2.13) and for faces
of distinct types the projections of vectors have opposite directions. Therefore, the
sum of projections of the vectors to line l is also equal to zero.

Second solution. Let X be a point inside the polyhedron, hi the distance
from X to the plane of the i-th face. Let us divide the polyhedron into pyramids
with vertex X whose bases are the faces of the polyhedron. The volume V of the
polyhedron is equal to the sum of volumes of these pyramids, i.e., 3V =

∑
hiSi,

where Si is the area of the i-th face.
Further, let ni be the unit vector of the outer normal to the i-th face, Mi an

arbitrary point of this face. Then hi = ({XMi}, ni) and, therefore,

3V =
∑

hiSi =
∑

({XMi}, Sini) =
∑

({XO}, Sini) +
∑

({OMi}, Sini) =

({OX},
∑

Sini) + 3V.

Here O is a fixed point of the polyhedron. Therefore,
∑

Sini = 0.
7.20. Consider parallelepiped ABCDA1B1C1D1. Let the diagonals of the faces

with common edge BC lie on given lines and AC be one of these diagonals. Then
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BC1 is the other of such diagonals and B1D the diagonal of the parallelepiped that
lies on the third given line.

Let us introduce the rectangular coordinate system so that line AC coincides with
the Ox-axis, line BC1 is parallel to Oy-axis and passes through point (0, 0, a), line
B1D is parallel to Oz-axis and passes through point (a, a, 0). Then the coordinates
of points A and C are (x1, 0, 0) and (x2, 0, 0); let the coordinates of points B and C1

be (0, y1, a) and (0, y2, a), let those of points D and B1 be (a, a, z1) and (a, a, z2),
respectively. Since {AD} = {BC} = {B1C1}, it follows that

a− x1 = x2 = −a, a = −y1 = y2 − a and z1 = −a = a− z2,

wherefrom

x1 = 2a, x2 = −a, y1 = −a, y2 = −2a, z1 = −a and z2 = 2a.

Therefore, we have found the coordinates of vertices A, B, C, D, B1 and C1.
Simple calculations show that AC = 3a, AB = a

√
6 and BC = a

√
3, i.e.,

triangle ABC is a rectangular one and, therefore, the area of face ABCD is equal
to AB · BC = 3a2

√
2. The plane of face ABCD is given by equation y + z = 0.

The distance from point (x0, y0, z0) to the plane px + qy + rz = 0 is equal, as we
know (Problem 1.27), to

|px0 + qy0 + rz0|√
p2 + q2 + r2

and, therefore, the distance from point B1 to face ABCD is equal to 3√
2
a. There-

fore, the volume of the parallelepiped is equal to 9a3.
7.21. Fix a = |a|, b = |b| and c = |c|. Let x, y, z be the cosines of the angles

between vectors a and b, b and c, c and a, respectively. Denote the difference
between the left- and right-hand sides of the inequality to be proved by

f(x, y, z) = a + b + c +
√

a2 + b2 + c2 + 2(abx + bcy + acz)−
√

a2 + b2 + 2abx−
−

√
b2 + c2 + 2bcy −

√
c2 + a2 + 2acz.

Numbers x, y and z are related by certain inequalities but it will be easier for us
to prove that f(x, y, z) ≥ 0 for all x, y, z whose absolute value does not exceed 1.

The function

ϕ(t) =
√

p + t−√q + t =
p− q√

p + t +
√

q + t

is monotonous with respect to t. Therefore, for fixed y and z the function f(x, y, z)
attains the least value when x = ±1. Further, fix x = ±1 and z; in this case the
function f attains the least value when y = ±1. Finally, fixing x = ±1 and y = ±1
we see that function f attains the least value when the numbers x, y, z are equal to
±1. In this case vectors a, b and c are colinear and the inequality is easy to verify.

7.22. Statements a) and b) easily follow from the definitions.
c) First solution. Introduce a coordinate system Oxyz; direct the Ox-axis

along vector a. It is easy to verify that vector (0,−az, ay) is the vector product of
vectors a = (a, 0, 0) and u = (x, y, z). Indeed, vector (0,−az, ay) is perpendicular
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to both vectors a and u and its length is equal to the product of the length of vectors
a by the length of the height dropped to vector a from the endpoint of vector u.
The compatibility of the orientations should be checked for distinct choices of signs
of numbers y and z; we leave this to the reader.

Now, the required equality is easy to verify by expressing the coordinates of the
vector products that enter it through the coordinates of vectors b and c.

Second solution. Consider prism ABCA1B1C1, where {AB} = b, {BC} = c
and {AA1} = a. Since {AC} = b + c, the indicated equality means that the sum
of the three vectors of the outer (or inner) normals to the lateral sides of the prism
whose lengths are equal to the areas of the corresponding faces is equal to zero.
Let A′B′C ′ be the section of the prism by the plane perpendicular to a lateral
edge. After the normal vectors are rotated through an angle of 90◦ in plane A′B′C ′

they turn into vectors d{A′B′}, d{B′C ′} and d{C ′A′}, where d is the length of the
lateral edge of the prism. The sum of these vectors is, clearly, equal to zero.

7.23. Let a = a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3, where e1, e2 and
e3 are unit vectors directed along the coordinate axes. To solve the problem we can
make use of the results of Problem 7.22 a)–c) but first observe that [e1, e2] = e3,
[e2, e3] = e1 and [e3, e1] = e2.

7.24. Both equalities can be proved by easy but somewhat cumbersome calcu-
lations with the help of the result of Problem 7.23.

7.25. a) By Problem 7.24 a)

[a, [b, c]] = b(cc,a)− c(a,b),

[b, [c,a]] = c(a,b)− a(b, c);

[c, [a,b]] = a(b, c)− b(a, c).

By adding up these equalities we get the desired statement.
b) Vectors [b, c], [c,a] and [a,b] are perpendicular to plane ABC and codirected

and their lengths are equal to 2SBOC , 2SCOA and 2SAOB , respectively. Hence,
vectors [a, [b, c]], [b, [c,a]] and [c, [a,b]] being rotated through an angle of 90◦ in
plane ABC turn into vectors 2aSBOC , 2bSCOA and 2cSAOB , respectively.

7.26. Let a, b and c be vectors that determine three nonadjacent sides of the
heptagon; a1, b1 and c1 the vectors of the opposite sides. Since a1 is perpendicular
to b and c, it follows that a1 = λ[b, c].

Therefore, the common perpendicular to vectors a and a1 is given by vector
na = [a, [b, c]]. From the Jacobi identity it follows that na +nb +nc = 0, i.e., these
vectors are perpendicular to one line.

7.27. Let a = {DA}, b = {DB} and c = {DC}. The statement of the problem
is equivalent to the equality

[a,b] + [b, c] + [c,a] + [b− c,a− c] = 0.

7.28. a) Let us prove that, for example, vector

[a,b] + [b, c] + [c,a]

lies in plane Π that passes through the bisector of face SAB perpendicularly to this
face. Plane Π is perpendicular to vector a − b and, therefore, it contains vector
[c,a− b]. Moreover, plane Π contains vector [a,b]; hence, it contains vector

[a,b] + [c,a− b] = [a,b] + [b, c] + [c,a].
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b) Let
{OA} = {OA1} sinα1 + {OA2} sin α2 + {OA3} sin α3.

Let us prove that, for example, plane OA2A divides the angle between faces OA2A1

and OA2A3 in halves. To this end it suffices to verify that the perpendicular to plane
OA2A is the bisector of the angle between the perpendiculars to planes OA2A1 and
OA2A3. The perpendiculars to these three planes are given by vectors

{OA2} × {OA} = {OA2} × {OA1} sin α1 + {OA2} × {OA3} sin α3,

{OA2} × {OA1}, {OA2} × {OA3},

respectively. As is easy to see, if |a| = |b|, then vector a + b determines the
bisector of the angle between vectors a and b. Therefore, it remains to prove that
the lengths of vectors {OA2}× {OA1} sinα1 and {OA2}× {OA3} sin α3 are equal.
But

|{OA2} × {OA1}| = sin A1OA2 = sinα3 and |{OA2} × {OA3}| sin α1

which completes the proof. For planes OA1A and OA3A the proof is similar.
7.29. Let a = {A1B}, b = {BC1} and c = {C1D}. Then the doubled areas of

the faces of tetrahedron A1BC1D are equal to the lengths of vectors [a,b], [b, c],
[c,d] and [d,a], where d = −(a + b + c) and the doubled areas of the faces of the
parallelepiped are equal to the lengths of vectors [a, c], [b,d] and [a + b,b + c].

Let x = [a,b], y = [b, c] and z = [c,a]. Then four times the sums of the squares
of areas of the faces of the tetrahedron and the parallelepiped are equal to

|x|2 + |y|2 + |y − z|2 + |z− x|2 and |z|2 + |x− y|2 + |x + y − z|2,

respectively. It is easy to verify that each of these sums is equal to

2(|x|2 + |y|2 + |z|2 − (y, z)− (x, z)).

7.30. As is known, three vectors are complanar if and only if their mixed product
is equal to zero. Making use of the formula from Problem 7.23 we see that the mixed
product of the given vectors is equal to

(a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3.

7.31. Let M be the center of mass of the tetrahedron, A the midpoint of the
edge through which plane Π passes, B the midpoint of the opposite edge, N ′ the
point symmetric to N through point M . Since point M is the midpoint of segment
AB (see Problem 14.3), it follows that AN ′ ‖ BN and therfore point N ′ belongs
to Π. Therefore, all the six planes pass through point N ′.

7.32. a) Let A be the midpoint of edge a, B the midpoint of the opposite edge
b. Further, let M be the center of mass of the tetrahedron, O the center of its
circumscribed sphere, O′ the point symmetric to O through M . Since point M
is the midpoint of segment AB (Problem 14.3), it follows that O′A ‖ OB. But
segment OB is perpendicular to edge b, hence, O′A ⊥ b and, therefore, point O′

belongs to the plane that passes through the midpoint of edge a perpendicularly to
edge b. Therefore, all the 6 planes pass through point O′.
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b) Let Monge’s point O′ lie in plane of face ABC. Let us draw plane Π parallel
to this face through vertex D. Since the center O of the circumscribed sphere of the
tetrahedron is symmetric to point O′ through its center of mass M and point M
divides the median of the tetrahedron drawn from vertex D in ratio 3 : 1 (Problem
14.3), then point O is equidistant from planes Π and ABC. It remains to notice
that if the center of the sphere is equidistant from the two parallel intersecting
planes, then the projection of the circle of the section to the second intersecting
plane coincides with the second circle of the section.

Figure 54 (Sol. 7.33)

7.33. Let us prove that ∠ABC = 90◦ (Fig. 54). To this end let us consider
the dashed segments A′B′ and B′C. Clearly, the symmetry through the plane that
passes through the midpoint of segment BB′ perpendicularly to it maps segment
AB to A′B′ and BC to B′C. Therefore, it suffices to prove that ∠A′B′C = 90◦.
Moreover, B′C ‖ BF , i.e., we have to prove that A′B′ ⊥ BF . The symmetry
through the bisector plane of the dihedral angle formed by the pentagons with
common edge BF sends point A′ to B′. Therefore, segment A′B′ is perpendicular
to this plane, in particular, A′B′ ⊥ BF .

For the remaining angles between the considered segments the proof is carried
out similarly.

7.34. First, suppose that both the given sphere and the sphere tangent to it
lie in the same dihedral angle between the given planes. Then both spheres are
symmetric through the bisector plane of this dihedral angle and, therefore, their
tangent point lies in this plane. If the given sphere and the sphere tangent to it
lie in distinct dihedral angles, then only one of the two tangent points of the given
sphere with the given planes can be their common point. Therefore, the locus to be
found is the union of the circle along which the bisector plane intersects the given
sphere, and two tangent points of the given sphere with the given planes (it is easy
to verify that all these points actually belong to the locus to be found).

7.35. Let α, β and γ be dihedral angles at edges OA, OB and OC, respectively.
Consider point C ′ symmetric to C through O. In the trihedral angle OABC ′

the dihedral angles at edges OA, OB and OC ′ are equal to π − α, π − β and γ.
Plane OMC ′, where M is the midpoint of segment AB, divides the dihedral angle
at edge OC ′ into two dihedral angles. Since planes OMP and OMQ, where P
and Q are the midpoints of segments AC ′ and BC ′, respectively, are symmetry
planes for trihedral angles OAMC ′ and OBMC ′, respectively, it follows that the
indicated dihedral angles at edge OC ′ are equal to π − α and π − β. Therefore,
γ = (π − α) + (π − β), as was required.
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7.36. Let O be the projection of vertex S to the plane of the base of the pyramid.
Since the vertices of the base of the pyramid are equidistant from point S, they
are also equidistant from point O and, therefore, they lie on one circle with center
O. Now, let us prove that BC = AE. Let M be the midpoint of side AB. Since
MO ⊥ AB and SO ⊥ AB, it follows that segment AB is perpendicular to plane
SMO and, therefore, the symmetry through plane SMO sends segment SA to
segment SB.

The dihedral angles at edges SA and SB are equal and, therefore, under this
symmetry plane SAE turns into plane SBC. Since the circle on which the vertices
of the base of the pyramid lie turns under this symmetry into itself, point E turns
into point C.

We similarly prove that BC = ED = AB = DC.
7.37. Let Π be a symmetry plane of the figure consisting of three pair-wise

nonparallel lines. Only two variants are possible:
1) Π is a symmetry plane for every given line;
2) one line is symmetric through Π and two other lines are symmetric to each

other.
In the first case either one line is perpendicular to Π and the other two lines

belong to Π or all the three lines belong to Π. Therefore, plane Π is determined by
a pair of given lines. Hence, there are not more than 3 planes of symmetry of this
type.

In the second case plane Π passes through the bisector of the angle between two
of the given lines perpendicularly to the plane that contains these lines. For each
pair of lines there exist exactly 2 such planes and, therefore, the number of planes
of symmetry of this type is not more than 6.

Thus, there are not more than 9 planes of symmetry altogether. Moreover, the
figure that consists of three pairwise perpendicular lines all passing through one
point has precisely 9 planes of symmetry.

7.38. Let a′ be the image of vector a under the considered symmetry; u the
projection of vector a to the given line. Then a′ + a = 2u and u = b (a,b)

(b,b) .
7.39. In space, introduce a coordinate system taking lines l1 and l for Ox- and

Oy-axes. The symmetry through line Ox sends point (x, y, z) to point (x,−y,−z)
and symmetry through line Oy sends the obtained point to point (−x,−y, z).

7.40. Fix an axis of symmetry l. Let us prove that the remaining axes of
symmetry can be divided into pairs. First, observe that symmetry through line l
sends an axis of symmetry into an axis of symmetry. If axis of symmetry l′ does
not intersect l or intersects it not at a right angle, then the pair to l′ is the axis
symmetric to it through l. If l′ intersects l at a right angle, then the pair to l′ is the
line perpendicular to l and l′ and passing through their intersection point. Indeed,
as follows from Problem 7.39, this line is an axis of symmetry.

7.41. Let M be the center of mass of the tetrahedron. The homothety with
center M and coefficient − 1

3 sends the vertices of the tetrahedron into the centers
of mass of its faces and, therefore, the circumscribed sphere of the tetrahedron
turns into a sphere of radius R

3 that intersects all the faces of the tetrahedron (or
is tangent to it).

To prove that the radius of this sphere is not shorter than r, it suffices to draw
planes parallel to the faces of the tetrahedron and tangent to the parts of the sphere
situated outside the tetrahedron. Indeed, then this sphere would be inscribed in a
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tetrahedron similar to the initial one and not smaller than the initial one.
7.42. Let SAB be the initial face of pyramid SABCD, let SAD be its other face.

Let us turn planes of these faces about lines AB and AD so that they coincide with
the plane of the base (the rotation is performed through the lesser angle). Consider
a coordinate system with the origin at point A and axes Ox and Oy directed along
rays AB and AD, respectively. The first projection determines a transformation
that sends point (x, y) to (x, ky), where k = cos α with α being the angle between
the base and a lateral face.

The second projection sends point (x, y) to (kx, y). Therefore, the composition
of these transformation sends point (x, y) to (kx, ky).

7.43. Let A and B be the most distant from each other points of the polyhedron.
Then the images of the polyhedron M under the homotheties with centers A and
B and coefficient 1

2 in each case determine the required disposition.
Indeed, these polyhedrons do not intersect since they are situated on distinct

sides of the plane that passes through the midpoint of segment AB perpendicularly
to it. Moreover, they lie inside M because M is a convex polyhedron.

7.44. Consider a convex polyhedron M and any three polyhedrons M1, M2 and
M3 homothetic to it with coefficient k. Let O1, O2 and O3 be the centers of the
corresponding homotheties. Clearly, if A is a point of polyhedron M most distant
from the plane that contains points O1, O2 and O3, then A does not belong to any
of the polyhedrons M1, M2 and M3. This follows from the fact that the homothety
with coefficient k and center O that belongs to plane Π changes k times the greatest
distance from the polyhedron to plane Π.

7.45. Let N be the center of mass of triangle ABC. The homothety with
center N and coefficient 1

4 sends point D to M . Let us prove that point M lies in
plane Π that passes through the center O1 of the circumscribed circle of triangle
ABC perpendicularly to its median AK. Indeed, OM ⊥ AK by the hypothesis
and OO1 ⊥ AK. Thus, point D lies in plane Π′ obtained from plane Π under the
homothety with center N and coefficient 4. Conversely, if point D lies in this plane,
then OM ⊥ AK.

Further, let K and L be the midpoints of edges BC and AD. Then M is
the midpoint of segment KL. Median OM of triangle KOL is a height only if
KO = OL. Since OA = OB, the heights OK and OL of isosceles triangles BOC
and AOD, respectively, are equal if and only if BC = AD, i.e., point D lies on the
sphere of radius BC centered at A. The locus to be found is the intersection of this
sphere with plane Π′.

7.46. We may assume that planes Π′ and Π′′ are not parallel since otherwise
the statement is obvious. Let l be the intersection line of these planes, A∗i the
intersection point of l with plane AiA

′
iA
′′
i . Plane AiA

′
iA
′′
i is perpendicular to l and,

therefore, l ⊥ A′iA
∗
i and l ⊥ A′′i A∗i . Hence, if we rotate plane Π′ about line l so

that it would coincide with Π′′, then lines A′iA
′′
i become perpendicular to l.

7.47. Consider the section with a plane perpendicular to line l. The desired
statement now follows from the corresponding planimetric statement on the com-
position of two axial symmetries.

7.48. Let A be a point, B its image under the symmetry through point O, C
the image of point B under the rotation through an angle of ϕ through line l and
D the image of C under the symmetry through plane Π. Then D is the image of
point A under the rotation through an angle of 180◦ + ϕ through line l.

7.49. a) Let T be a transformation that sends point A to point B distinct from
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A; let S be the symmetry through plane Π that passes through the midpoint of
segment AB perpendicularly to it. Then

S ◦ T (A) = S(B) = A,

i.e., A is a fixed point of transformation S ◦ T . Moreover, if T (X) = X for a
point X, then AX = T (A)T (X) = BX. Therefore, point X belongs to Π; hence,
S(X) = X. Thus, point A and all the fixed points of transformation T are also
fixed points of transformation S ◦ T .

In space, take 4 points not in one plane and consider their images under given
transformation P . For k ≤ 4 it is possible to select k transformations S1, . . . , Sk

— symmetries through planes — such that the transformation S1 ◦ · · · ◦ Sk ◦ P
preserves the selected 4 points, i.e., this transformation preserves all the points in
space. Therefore, P = Sk ◦ · · · ◦ S1 and to prove this we can make use of the fact
that if S ◦ F = G, where S is the symmetry through a plane, then

S ◦ C = S ◦ S ◦ F = F,

because S ◦ S is the identity transformation.
b) For a transformation that fixes O we can take O as one of the 4 points whose

images determine this transformation. The rest of the proof is absolutely analogous
to the solution of heading a).

7.50. a) By Problem 7.49 b) any movement of the first kind which has a fixed
point is the composition of two symmetries through planes, i.e., is a rotation about
the line along which these planes intersect (cf. Problem 7.47).

b) Let T be a given motion of the second kind, I the symmetry through a fixed
point O of this transformation. Since we can represent I as the composition of
three symmetries through three pairwise perpendicular planes passing through O,
it follows that I is a second kind transformation. Therefore, P = T ◦I is a first kind
transformation, where O is a fixed point of this transformation. Therefore, P is a
rotation about an axis l that passes through point O. Therefore, transformation
T = T ◦I◦I = P ◦I is the composition of a rotation about a line l and the symmetry
through a plane perpendicular to l (cf. Problem 7.48).

7.51. After the ball has rolled, any point A on its surface turns into a point
T (A), where T is a first kind movement with a fixed point, the center of the ball.
By Problem 7.50 a), the movement T is a rotation about an axis l. Therefore,
points X1, X2 and X3 lie in the plane that passes through point X perpendicularly
to l.

7.52. Let us relate with the given trihedral angle a rectangular coordinate system
Oxyz. A ray of light that moves in the direction of vector (x, y, z) will move in
the direction of vector (x, y,−z) being reflected from plane Oxy. Therefore, after
being reflected from all of its three faces it will move in the direction of vector
(−x,−y,−z).

7.53. Let B be the incidence point of the ray to the mirror; A the point on the
ray distinct from B; K and L the projections of A to the mirror in the initial and
rotated positions, respectively, A1 and A2 the points symmetric to A through these
positions of the mirror.

The angle in question is equal to angle A1BA2. If AB = a, then A1B = A2B = a
and AK = a sin α. Since ∠KAL = β, then

A1A2 = 2KL = 2AK sin β = 2a sin β.
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Therefore, if ϕ is the angle in question, then

sin(
ϕ

2
) = sin α sin β.

7.54. Let us introduce a coordinate system with the origin O in the vertex of
the cone and axis Ox that passes through point A (Fig. 55).

Figure 55 (Sol. 7.54)

Let {OM} = (x, y, z), then {AM} = (x − a, y, z), where a = AO. If α is the
angle between axis Oz of the cone and the cone’s generator, then x2 + y2 = k2z2,
where k = tan α. Consider vector {PM} perpendicular to the surface of the cone
with the beginning point P on the axis of the cone. The coordinates of this vector
are (x, y, t), where

0 = ({OM}, {PM}) = x2 + y2 + tz = k2z2 + tz, i.e., t = −k2z.

The symmetry through line PM sends vector a = {AM} into vector 2b (a,b)
(b,b)−a,

where b = {PM} (cf. Problem 7.38). The third coordinate of this vector is equal
to

−2k2z
x2 − ax + y2 − k2z2

x2 + y2 + k4z2
− z =

2ak2xz

(x2 + y2)(1 + k2)
− z;

whereas it should be equal to zero. Therefore, the locus to be found is given by the
equation

x2 + y2 − 2ak2x

1 + k2
= 0.

It is the circle of radius ak2

1+k2 = a sin2 a that passes through the vertex of the cone.
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CHAPTER 8. CONVEX POLYHEDRONS

AND SPATIAL POLYGONS

§1. Miscellaneous problems

8.1. a) Areas of all the faces of a convex polyhedron are equal. Prove that the
sum of distances from its inner point to the planes of the faces does not depend on
the position of the plane.

b) The hights of the tetrahedron are equal to h1, h2, h3 and h4; let d1, d2, d3 and
d4 be distances from an arbitrary inner point of the tetrahedron to the respective
faces. Prove that ∑ di

hi
= 1.

8.2. a) Prove that a convex polyhedron cannot have exactly 7 edges.
b) Prove that a convex polyhedron can have any number of edges greater than

5 and distinct from 7.
8.3. A plane that intersects a circumscribed polyhedron divides it into two parts

of volume V1 and V2; it divides its surface into two parts whose areas are S1 and
S2. Prove that V1 : S1 = V2 : S2 if and only if the plane passes through the center
of the inscribed sphere.

8.4. In a convex polyhedron, an even number of edges goes out from each
vertex. Prove that any section of the polyhedron by a plane that does not contain
its vertices is a polygon with an even number of sides.

8.5. Prove that if any vertex of a convex polyhedron is connected by edges with
all the other vertices, then this polyhedron is a tetrahedron.

8.6. What is the greatest number of sides a projection of a convex polyhedron
with n faces can have?

8.7. Each face of a convex polyhedron has a center of symmetry.
a) Prove that the polyhedron can be cut into parallelepipeds.
b) Prove that the polyhedron itself has the center of symmetry.
8.8. Prove that if all the faces of a convex polyhedron are parallelograms, then

their number is the product of two consecutive positive integers.

§2. Criteria for impossibility to inscribe or
circumscribe a polyhedron

8.9. Certain faces of a convex polyhedron are painted black, other faces are
painted white so that no two black faces have a common edge. Prove that if the
area of the black faces is greater than that of white ones, then no sphere can be
inscribed into this polyhedron.

For a circumscribed polyhedron can the area of black faces be equal to that of
white ones?

8.10. Certain faces of a convex polyhedron are painted black, the other ones
white so that no two black faces have a common edge. Prove that if there are more
black faces than whight ones, then it is impossible to inscribe this polyhedron into
the sphere.
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8.11. Some vertices of a convex polyhedron are painted black, the other ones
are painted white so that at least one endpoint of each edge is white. Prove that
if there are more black vertices than white ones, then this polyhedron cannot be
inscribed in the sphere.

8.12. All the vertices of a cube are cut off by planes so that each plane cuts off a
tetrahedron. Prove that the obtained polyhedron cannot be inscribed in a sphere.

8.13. Through all the edges of an octahedron planes are drawn so that a poly-
hedron with quadrilateral faces is obtained and to each edge of the octahedron one
face corresponds. Prove that the obtained polyhedron cannot be inscribed in a
sphere.

§3. Euler’s formula

In this paragraph V is the number of vertices, E the number of edges, F the
number of faces of a convex polyhedron.

8.14. Prove that V − E + F = 2. (Euler’s formula.)
8.15. a) Prove that the sum of the angles of all the faces of a convex polyhedron

is equal to the doubled sum of the angles of a plane polygon with the same number
of vertices.

b) For every vertex of a convex polyhedron consider the difference between 2π
and the sum of the plane angles at this vertex. Prove that the sum of all these
differences is equal to 4π.

8.16. Let Fk be the number of k-gonal faces of an arbitrary polyhedron, Vk the
number of its vertices at which k edges meet. Prove that

2E = 3V3 + 4V4 + 5V5 + · · · = 3F3 + 4F4 + 5V5 + . . .

8.17. a) Prove that in any convex polyhedron, there is either a triangular face
or a trihedral angle.

b) Prove that for any convex polyhedron:

#(the triangular faces) + #(the trihedral angles) ≥ 8.

8.18. Prove that in any convex polyhedron there exists a face that has not fewer
than 6 sides.

8.19. Prove that for any convex polyhedron 3F ≥ 6 + E and 3V ≥ 6 + F .
8.20. Given a convex polyhedron all whose faces have either 5, 6 or 7 sides and

the polyhedral angles are all trihedral ones. Prove that the number of pentagonal
faces is by 12 greater than the number of 7-gonal ones.

§4. Walks around polyhedrons

8.21. A planet is of the form of a convex polyhedron with towns at its vertices
and roads between those towns along its edges. Two roads are closed for repairs.
Prove that from any town one can reach any other town using the remaining roads.

8.22. On each edge of a convex polyhedron a direction is indicated; into any
vertex at least one edge enters and at least one edge exits from it. Prove that there
exist two faces such that one can go around them moving in accordance with the
introduced orientation of the edges.

8.23. The system of roads that go along the edges of a convex polyhedron
depicted on Fig. 56 connects all its vertices and divides it into two parts. Prove
that this system of roads has no fewer than 4 deadends. (For the system of roads
plotted on Fig. 56 vertices A, B, C and D correspond to the deadends.)
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Figure 56 (8.22)

§5. Spatial polygons

8.24. A plane intersects the sides of a spatial polygon A1 . . . An (or their exten-
sions) at points B1, . . . , Bn, where point Bi lies on line AiAi+1. Prove that

A1B1

A2B1
· A2B2

A3B2
. . .

AnBn

A1Bn
= 1

and the even number of points Bi lies on the sides of the polygon (not on their
extensions).

8.25. Given four lines no three of which are parallel to one plane, prove that
there exists a spatial quadrilateral whose sides are parallel to these lines and the
ratio of the sides parallel to the corresponding lines for all such quadrilaterals is
the same.

8.26. a) How many pairwise distinct spatial quadrilaterals with the same set of
vectors of its sides are there?

b) Prove that the volumes of all the tetrahedrons determined by these spatial
quadrilaterals are equal.

8.27. Givenoints A, B, C and D in space such that AB = BC = CD and
∠ABC = ∠BCD = ∠CDA = α. Find the angle between lines AC and BD.

8.28. Let B1, B2, . . . , B5 be the midpoints of sides A3A4, A4A5, . . . , A2A3,
respectively, of spatial pentagon A1 . . . A5; let also {AiPi} =

(
1 + 1√

5

)
{AiBi} and

{AiQi} =
(
1− 1√

5

)
{AiBi}. Prove that the points Pi as well as the points Qi lie

in one plane.
8.29. Prove that a pentagon all whose sides and angles are equal is a plane one.

* * *

8.30. In a spatial quadrilateral ABCD the sums of the opposite sides are equal.
Prove that there exists a sphere tangent to all its sides and diagonal AC.

8.31. A sphere is tangent to all the sides of the spatial quadrilateral. Prove that
the tangent points lie in one plane.
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8.32. On sides AB, BC, CD and DA of a spatial quadrilateral ABCD (or on
their extensions) points K, L, M and N , respectively, are taken so that AN = AK,
BK = BL, CL = CM and DM = DN . Prove that there exists a sphere tangent
to lines AB, BC, CD and DA.

8.33. Let a, b, c and d be the lengths of sides AB, BC, CD and DA of spatial
quadrilateral ABCD.

a) Prove that if none of the three relations

a + b = c + d, a + c = b + d and a + d = b + c

holds, then there exist exactly 8 distinct spheres tangent to lines AB, BC, CD and
DA.

b) Prove that at least one of the indicated relations hold, then there exist infin-
itely many distinct spheres tangent to lines AB, BC, CD and DA.

Solutions

8.1. a) Let V be the volume of the polyhedron, S the area of its face, hi the
distance from point X inside the polyhedron to the i-th face. By dividing the
polyhedron into pyramids with vertex X whose bases are its faces we get

V =
Sh1

3
+ · · ·+ Shn

3
.

Therefore,

h1 + · · ·+ hn =
3V

S
.

b) Let V be the volume of the tetrahedron. Since hi = 3V
Si

, where Si is the area
of the i-th face, it follows that

∑ di

hi
=

∑
diSi

3V
.

It remains to notice that diSi

3 = Vi, where Vi is the volume of the pyramid with
vertex at the selected point of the tetrahedron, the i-th face is the base, and

∑
Vi =

V .
8.2. a) Suppose that the polyhedron has only triangular faces and their number

is equal to F . Then the number of edges of the polyhedron is equal to 3F
2 , i.e.,

is divisible by 3. If the polyhedron has a face with more than 3 sides, then the
polyhedron has not fewer than 8 edges.

b) Let n ≥ 3. Then an n-gonal pyramid has 2n edges and the polyhedron
obtained if we cut off a triangular pyramid in n-gonal pyramid with the plane that
passes near one of the vertices of the base of the triangular pyramid has 2n + 3
edges.

8.3. Suppose, for definiteness, that the center O of the inscribed sphere belongs
to the part of the polyhedron with volume V1. Consider the pyramid with vertex
O whose base is the section of the polyhedron with the given plane. Let V be the
volume of this pyramid. Then V1 − V = 1

3rS1 and V2 + V = 1
3rS2, where r is the

radius of the inscribed sphere (cf. Problem 3.7). Therefore, S1 : S2 = V1 : V2 if and
only if

(V1 − V ) : (V2 + V ) = S1 : S2 = V1 : V2
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and, therefore V = 0, i.e., point O belongs to the intersecting plane.
8.4. There is a finite number of lines that connect vertices of the polyhedron and,

therefore, we can jiggle the given plane a little so that in the process of jiggling it
will not intersect any vertex and in its new position it will not be parallel to neither
of the lines that connect the vertices of the polyhedron.

Let us move this plane parallel to itself until it stops intersecting the polyhedron.
The number of vertices of the section will vary only when the plane will pass through
the vertices of the polyhedron and each time it will pass one vertex only. If to one
side of this plane there lies m edges that go out of the vertex and there are n edges
on the other side, then the number of sides in the section when the vertex is passed
changes by

n−m = (n + m)− 2m = 2k − 2m,

i.e., by an even number. Since after the plane leaves the polyhedron the number of
the section’s sides is equal to zero, the number of the sides of the initial section is
an even one.

8.5. If any vertex of the polyhedron is connected by edges with any other
vertices, then all the faces are triangular.

Consider two faces ABC and ABD with common edge AB. Suppose that the
polyhedron is not a tetrahedron. Then it also has a vertex E distinct from the
vertices of the considered faces. Since points C and D lie on different sides of plane
ABE, triangle ABE is not a face of the given polyhedron.

If we cut the polyhedron along edges AB, BE and EA, then we divide the surface
of the polyhedron into two parts (for a nonconvex polyhedron this would have been
false) such that points C and D lie in distinct parts. Therefore, points C and D
cannot be connected by an edge, since otherwise the cut would have intersected it
but edges of a convex polyhedron cannot intersect along inner points.

8.6. Answer: 2n− 4. First, let us prove that the projection of a convex polyhe-
dron with n faces can have 2n− 4 sides. Let us cut off regular tetrahedron ABCD
edge CD with a prismatic surface whose lateral edges are parallel to CD (Fig. 57).
The projection of the obtained polyhedron with n faces to the plane parallel to
lines AB and CD has 2n− 4 sides.

Figure 57 (Sol. 8.6)

Now, let us prove that the projection M of a convex polyhedron with n faces
cannot have more than 2n− 4 sides. The number of sides of the projection to the
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plane perpendicular to a face cannot be greater than the number of sides of all the
other projections.

Indeed, such a projection sends the given face to a side of the polygon; if we
slightly jiggle the plane of the projection, then this side will either be preserved or
splits into several sides and the number of the remaining sides does not vary.

Therefore, we will consider the projections to planes not perpendicular to faces.
In this case the edges whose projections belong to the boundary of the polygon M
divide the polyhedron into two parts: the “upper” and the “lower”. Let p1 and
p2, q1 and q2, r1 and r2 be the numbers of vertices, edges and faces in the upper
(subscript 1) and lower (subscript 2) parts, respectively (the vertices and edges on
the boundary are ignored); m the number of vertices of M and m1 (resp. m2) the
number of vertices of M from which at least one edge of the upper (resp. lower)
part exits. Since from each vertex of M at least one edge of the upper or lower part
exits, m ≤ m1 + m2.

Now, let us estimate m1. From each vertex of the upper part not less than 3
edges exit and, therefore, the number of the edges’ endpoints for the upper part is
not less than 3p1 + m1.

On the other hand, the number of the endpoints of these edges is equal to 2q1;
hence, 3p1 + m1 ≤ 2q1. Now, let us prove that

p1 − q1 + r1 = 1.

The projections of the edges of the upper part divide M into several polygons. The
sum of the angles of these polygons is equal to π(m− 2) + 2πp1.

On the other hand, it is equal to
∑

i π(q1i − 2), where q1i is the number of sides
of the i-th polygon of the partition; the latter sum is equal to π(m + 2q1) − 2r1.
By equating both expressions for the sum of the angles of the polygon we get the
desired statement.

Since q1 = p1 + r1 − 1 and m1 + 3p1 ≤ 2q1, it follows that m1 ≤ 2r1 − 2− p1 ≤
2r1 − 2. Similarly, m2 ≤ 2r2 − 2. Therefore,

m ≤ m1 + m2 ≤ 2(r1 + r2)− 4 = 2n− 4.

8.7. a) Let us take an arbitrary face of the given polyhedron and its edge r1.
Since the face is centrally symmetric, it follows that it contains an edge r2 equal
and parallel to r1. The face adjacent to edge r2 also has an edge r3 equal and
parallel to r1, etc. As a result we get a “belt” with faces determined by edge r1.
Show (this is not difficult) that it will necessarily close on edge r1.

If we cut out this “belt” from the surface of the polyhedron then two “hats”
remain: H1 and H2. Let us move hat H1 inside the polyhedron by the vector de-
termined by edge r1 and cut the polyhedron along the surface T (H1) thus obtained.
The parts of the polyhedron confined between H1 and T (H1) can be divided into
prisms and by dividing the bases of these prisms into parallelograms (as shown in
Plane Problem 24.19) we get a partition into parallelepipeds.

The faces of the polyhedron confined between T (H1) and H2 are centrally sym-
metric and the number of its edges is smaller than that of the initial polyhedron by
the number of edges of the “belt” parallel to r1. Therefore, after a finite number
of such operations the polyhedron can be divided into parallelepipeds.

b) As in heading a) consider a “belt” and “hats” determined by an edge r of
face F . The projection of the polyhedron to the plane perpendicular to edge r is a
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convex polygon whose sides are the projections of the faces that enter the “belt”.
The projections of faces from one hat determine a partition of this polygon into
centrally symmetric polygons.

Therefore, this polygon is centrally symmetric itself (cf. Plane Problem 24.19),
consequently, for edge E there exists an edge E′ whose projection is parallel to
the projection of E, i.e., these faces are parallel themselves; it is also clear that a
convex polygon can only have one face parallel to E. Faces E and E′ enter the
same “belt”; therefore, E′ also has an edge equal and parallel to edge r.

By performing similar arguments for all “belts” given by edges of face E we
deduce that faces E and E′ have corresponding equal and parallel edges. Since
these faces are convex, they are equal. The midpoint of the segment that connects
their centers of symmetry is their center of symmetry.

Thus, for any edge there exists a centrally symmetric face. It remains to demon-
strate that all the centers of symmetry of pairs of faces coincide. It suffices to prove
this for two faces with a common edge. By considering the “belt” determined by
this edge we see that the faces parallel to them also have a common edge and both
centers of symmetry of the pairs of faces coincide with the center of symmetry of
the pair of common edges of these faces.

8.8. Let us make use of the solution of Problem 8.7. Each “belt” divides
the surface of the polyhedron into two “hats”. Since the polyhedron is centrally
symmetric, both hats contain an equal number of faces. Therefore, another “belt”
cannot lie entirely in one hat, i.e., any two belts intersect and the intersection
constitutes precisely two faces (parallel to the edges that determine belts).

Let k be the number of distinct “belts”. Then each “belt” intersects with k − 1
other belts, i.e., it contains 2(k−1) faces. Since any face is a parallelogram, it enters
exactly two belts. Therefore, the number of faces is equal to 2(k−1)k

2 = (k − 1)k.
8.9. Let us prove that if no two black faces of the circumscribed polyhedron

have a common edge, then the area of black faces does not exceed the area of white
ones. In the proof we will make use of the fact that

if two faces of a polyhedron are tangent to the sphere at points O1 and O2 and
AB is their common edge, then 4ABO1 = 4ABO2.

Let us divide the faces into triangles by connecting each tangent point of the
polyhedron and the sphere with all the vertices of the corresponding face. From
the preceding remark and the hypothesis it follows that to every black triangle we
can associate a white triangle of the same area. Therefore, the sum of the areas of
black triangles is not less than the sum of the areas of the white triangles.

The circumscribed polyhedron — a regular octahedron — can be painted so that
the area of the black faces is equal to the area of the white ones and no two black
faces have a common edge.

8.10. Let us prove that if a sphere is inscribed into the polyhedron and no two
black faces have a common edge, then there are not more black faces than there
are white ones. In the proof we will make use of the fact that

if O1 and O2 are tangent points with the sphere of faces with common edge AB,
then 4ABO1 = 4ABO2 and, therefore, ∠AO1B = ∠AO2B.

For all the faces consider all the angles that subtend the edges of a face, the
angles with vertices at the tangent points of the sphere with this face. From the
preceding remark and the hypothesis it follows that to each such angle of a black
face we can associate an equal angle of a white face. Therefore, the sum of black
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angles does not exceed the sum of white angles.
On the other hand, the sum of such angles for one face is equal to 2π. Hence,

the sum of black angles is equal to 2πn, where n is the number of black faces, and
the number of white angles is equal to 2πm, where m is the number of white faces.
Thus, n ≤ m.

8.11. Let us prove that if the polyhedron is inscribed in a sphere and no two
black vertices are connected by an edge, then the number of black vertices does not
exceed the number of white ones.

Let the planes tangent to the sphere centered at O at points P and Q intersect
along line AB. Then any two planes passing through segment PQ cut on plane
ABP the same angle as on plane ABQ. Indeed, these angles are symmetric through
plane ABO.

Now, for each vertex of our polyhedron consider the angles that dihedral angles
between the faces at this vertex cut on the tangent plane. From the preceding
remark and the hypothesis it follows that to every angle at a black vertex we can
associate an equal angle at a white vertex. Therefore, the sum of black angles does
not exceed the sum of white ones.

On the other hand, the sum of such angles for one vertex is equal to π(n − 2),
where n is the number of faces of the polyhedral angle at this vertex (to prove this
it is convenient to consider the section of the polyhedral angle by a plane parallel
to the tangent plane). We also see that if instead of these angles we consider the
angles complementing them to 180◦ (i.e., the exterior angles of the polyhedron of
the section), then their sum for any vertex will be equal to 2π. As earlier, the sum
of such black angles does not exceed the sum of such white angles.

On the other hand, the sum of black angles is equal to 2πn, where n is the
number of black vertices, and the sum of white angles is equal to 2πm, where m is
the number of white vertices. Therefore, 2πn ≤ 2πm, i.e., n ≤ m.

8.12. Let us paint the faces of the initial cube white and the remaining faces
of the obtained polyhedron black. There are 6 white faces and 8 black faces and
no two black faces have a common edge. Therefore, it is impossible to inscribe a
sphere in this polyhedron (cf. Problem 8.10).

8.13. Let us paint 6 vertices of the initial octahedron white and 8 new vertices
black. Then one endpoint of each edge of the obtained polyhedron is white and
the other one is black. Therefore, it is impossible to inscribe this polyhedron into
a sphere (cf. Problem 8.11).

8.14. First solution. Let M be the projection of the polyhedron to the plane
not perpendicular to any of its faces; this projection maps all the faces to polygons.
The edges that go into sides of the boundary of M divide the polyhedron into two
parts. Let us consider the projection of one of these parts (Fig. 58). Let n1, . . . ,
nk be the numbers of edges of the faces of this part, V1 the number of the inner
vertices of this part, V ′ the number of vertices on the boundary of M .

The sum of the angles of the polygons into which the polygon M is divided is,
on the one hand, equal to

∑
π(ni−2) and, on the other hand, to π(V ′−2)+2πV1.

Therefore, ∑
ni − 2k = V ′ − 2 + 2V1,

where k is the number of faces in the first part. Writing down a similar equality
for the second part of the polyhedron and taking their sum we get the desired
statement.
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Figure 58 (Sol. 8.14)

Second solution. Let us consider the unit sphere whose center O lies inside the
polyhedron. The angles of the form AOB, where AB is an edge of the polyhedron,
divide the surface of the sphere into spherical triangles.

Let ni be the number of sides of the i-th spherical polygon, σi the sum of its
angles, Si its area. By Problem 4.44 Si = σi − π(ni − 2). Summing all these
equalities for i = 1, . . . , F we get

4π = 2πV − 2πE + 2πF.

8.15. Let Σ be the sum of all the faces of a convex polyhedron. In heading a)
we have to prove that Σ = 2(V − 2)π and in heading b) we have to prove that
2V π − Σ = 4π. Therefore, the headings are equivalent.

If a face has k edges, then the sum of its angles is equal to (k − 2)π. When we
sum over all the faces every edge is counted twice because it belongs to precisely
two faces. Therefore, Σ = (2E − 2F )π. Hence,

2V π − Σ = 2π(V − E + F ) = 4π.

8.16. To every edge we can associate two vertices that it connects. The vertex
in which k edges meet is encountered k times. Therefore,

2E = 3V3 + 4V4 + 5V5 + . . .

On the other hand, to every edge we can associate two faces adjacent to it, hence,
a k-gonal face is encountered k times. Therefore,

2E = 3F3 + 4F4 + 5F5 + . . .

8.17. a) Suppose that a convex polyhedron has neither triangular faces nor
trihedral angles. Then V3 = F3 = 0; therefore, 2E = 4F4 + 5F5 + · · · ≥ 4F and
2E = 4V4 + 5V5 + · · · ≥ 4V (see Problem 8.16). Thus, 4V − 4E + 4F ≤ 0. On the
other hand, V − E + F = 2. Contradiction.

b) By Euler’s formula 4V + 4F = 4E + 8. Let us substitute into this formula
the following expressions for its constituents:

4V = 4V3 + 4V4 + 4V5 + . . . , 4F = 4F3 + 4F4 + 4F5 . . .

4E = 2E + 2E = 3V3 + 4V4 + 5V5 + · · ·+ 3F3 + 4F4 + 5F5 + . . .
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After simplification we get

V3 + F3 = 8 + V5 + 2V6 + 3V7 + · · ·+ F5 + 2F6 + 3F7 + · · · ≥ 8.

8.18. Suppose that any face of a convex polyhedron has at least 6 sides. Then
F3 = F4 = F5 = 0 and, therefore, 2P = 6F6 + 7F7 + · · · ≥ 6F (cf. Problem 8.16),
i.e., E ≥ 3F . Moreover, for any polyhedron we have

2E = 3V3 + 4V4 + · · · ≥ 3V.

By adding the inequalities E ≥ 3F and 2E ≥ 3V we get E ≥ F + V . On the other
hand, E = F + V − 2. Contradiction.

Remark. We can similarly prove that in any convex polyhedron there exists a
vertex at which at least 6 edges meet.

8.19. For any polyhedron we have

2E = 3V3 + 4V4 + 5V5 + · · · ≥ 3V.

On the other hand, V = E−F +2. Therefore, , 2E ≥ 3(E−F +2), i.e., 3F ≥ 6+E.
The inequality 3V ≥ 6 + E is similarly proved.

8.20. Let a, b and c be the total number of faces with 5, 6 and 7 sides, respec-
tively. Then

E =
5a + 6b + 7c

2
, F = a + b + c

and since by the hypothesis at every vertex 3 edges meet, V = 5a+6b+7c
3 . Multiply-

ing these expressions by 6 and inserting them into the formula 6(V + F −E) = 12
we get the desired statement.

8.21. Let A and B be the given towns. First, let us prove that one could ride
from A to B along the roads before the two roads were closed for repairs. To this
end let us consider the projection of the polyhedron to a line not perpendicular
either of the polyhedron’s edges (such a projection does not send distinct vertices
of the polyhedron into one point).

Let A′ and B′ be projections of points A and B, respectivly, and M ′ and N ′ be
the extremal points of the projection of the polyhedra; let M and N be vertices
whose projections are M ′ and N ′, respectively. If we go from vertex A so that the
movement in the projection is performed in the direction from M ′ to N ′, then in
the end we will necessarily get to vertex N . Similarly, from vertex B we can reach
N . Thus, we can get from A to B (via N).

If the obtained road from A to B passes along the road to be closed, then there
are two more roundabout ways along the faces for which this edge is a common one.
The second closed road cannot simultaneously go over both of these roundabouts.

8.22. Let us go out of a vertex of the polyhedron and continue walking along
the edges in the direction indicated on them until we get a vertex where we have
already been. The road from the first passage through this vertex to the second
one forms a “loop” that divides a polyhedron into two parts. Let us consider one
of them. On it, let us find a face with the desired property.

It is possible to circumvent the boundary of each of the two parts by moving in
accordance with the introduced orientation. If the considered figure is a face itself,
then everything is proved.
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Therefore, let us assume that it is not a face, i.e., its boundary has a vertex from
(resp. at) which an edge that does not belong to the boundary of the figure exits
(resp. enters). Let us go along this edge and continue to go further along the edges
in the indicated directions (resp. in the directions opposite to the indicated ones)
until we again reach the boundary or get a loop. This pass divides the figure into
two parts; the boundary of one of them can be circumvent in accordance with the
orientation (Fig. 59). With this part perform the same operation, etc.

Figure 59 (Sol. 8.22)

After several such operations there remains one face that possesses the desired
property. For the other of the parts obtained at the very first stage we can similarly
find another of the required faces.

8.23. Let us paint the vertices of the polyhedron two colours as indicated on Fig.
60. Then any edge connects two vertices of distinct colours. For the given system
of roads call the number of roads that pass through a vertex of the polyhedron the
degree of the vertex.

If the system of roads has no vertices of degree greater than 2, then the difference
between the number of black and white vertices does not exceed 1.

Figure 60 (Sol. 8.23)

If there is at least one vertex of degree 3 and the degrees of the other vertices do
not exceed 2, then the difference between the number of black and white vertices
does not exceed 2. In our case the difference between the number of black and
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white vertices is equal to 10− 7 = 3. Hence, there exists a vertex of degree not less
than 4 or 2 vertices of degree 3. In either case the number of deadends is not fewer
than 4.

8.24. Let us consider the projection to a line perpendicular to the given plane.
The projections of all the points Bi is one point, B, and the projections of points
A1, . . . , An are C1, . . . , Cn, respectively. Since the ratios of the segments that lie
on one line are preserved under a projection,

A1B1

A2B1
· A2B2

A3B2
. . .

AnBn

A1Bn
=

C1B

C2B
· C2B

C3B
. . .

CnB

C1B
= 1.

The given plane divides the space into two parts. By going from vertex Ai to
Ai+1 we pass from one part of the space to another one only if point Bi lies on side
AiAi+1. Since by going over the polyhedron we return to the initial part of the
space, the number of points Bi that lie on the sides of the polyhedron is an even
one.

8.25. Let a, b, c and d be vectors parallel to the given lines. Since any three
vectors in space not in one plane form a basis, there exist nonzero numbers α, β
and γ such that αa + βb + γc + d = 0. Vectors αa, βb, γc and d are sides of the
quadrilateral to be found.

Now, let α1a, β1b, γ1c and d be vectors of the sides of another such quadrilateral.
Then

α1a + β1b + γ1c + d = 0 = αa + βb + γc + d,

i.e.,
(α1 − α)a + (β1 − β)b + (γ1 − γ)c = 0.

Since vectors a, b and c do not lie in one plane, it follows that α = α1, β = β1 and
γ = γ1.

8.26. a) Fix one of the vectors of sides. It can be followed by any of the three of
remaining vectors which can be followed by any of the remaining vectors. Therefore,
the total number of distinct quadrilaterals is equal to 6.

b) Let a, b, c and d be given vectors of sides. Let us consider a parallelepiped
determined by vectors a, b and c (Fig. 61); vector d serves as its diagonal. An
easy case-by-case checking demonstrates that all the 6 distinct quadrilaterals are
contained among the quadrilaterals whose sides are the faces of this parallelepiped
and its diagonal is d (when performing this case-by-case checking it is convenient
to fix vector d). The volume of the corresponding tetrahedron constitutes 1

6 of the
volume of the parallelepiped.

Figure 61 (Sol. 8.26)
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8.27. In triangles ABC and CDA, sides AB and CD and angles B and D are
equal and side AC is the common one. If 4ABC = 4CDA, then AC ⊥ BD.

Figure 62 (Sol. 8.27)

Now, consider the case when these triangles are not equal. On ray BA, take
point P such that 4CBP = 4CDA, i.e., CP = CA (Fig. 62). Point P might not
coincide with point A only if ∠ABC < ∠APC = ∠BAC, i.e., α < 60◦. In this case

∠ACD = ∠PCB =
(
90◦ − α

2

)
− α = 90◦ − 3α

2
.

Therefore,

∠ACD + ∠DCB =
(

90◦ − 3α

2

)
+ α = 90◦ − α

2
= ∠ACB.

Hence, points A, B, C and D lie in one plane and point D lies inside angle ACB.
Since 4ABC = 4DCB and these triangles are isosceles ones, the angle between
lines AC and BD is equal to α.

Thus, if α ≥ 60◦, then AC ⊥ BD and if α < 60◦, then either AC ⊥ BD or the
angle between lines AC and BD is equal to α.

8.28. Let {AiXi} = λ{AiBi}. It suffices to verify that for λ = 1± 1√
5

the sides
of the pentagon X1 . . . X5 are parallel to the opposite diagonals. Let a, b, c, d and
e be the vectors of the sides {A1A2}, {A2A3}, . . . , {A5A1}. Then

{A1X1} = λ
(
a + b + c

2

)
,

{A1X2} = a + λ
(
b + c + d

2

)
,

{A1X3} = a + b + λ
(
c + d + e

2

)
,

{A1X4} = a + b + c + λ
(
d + e + a

2

)
;

{A1X5} = a + b + c + d + λ
(
e + a + b

2

)
.

Therefore,

{X1X3} = {A1X3} − {A1X1} = (1− λ)a + (1− λ)b + λd + λ
2 (c + e) =(

1− 3λ
2

)
a +

(
1− 3λ

2

)
b + λ

2d,

{X4X5} = {A1X5} − {A1X4} = λ
2a + λ

2b + (1− λ)d.
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Thus, X1X3 ‖ X4X5 if and only if

2− 3λ

λ
=

λ

2− 2λ
,

i.e.,
5λ2 − 10λ + 4 = 0.

The roots of this equation are 1± 1√
5
.

8.29. First solution. Suppose that the given pentagon A1 . . . A5 is not a plane
one. The convex hull of its vertices is either a quadrilateral pyramid or consists of
two tetrahedrons with the common face. In both cases we may assume that vertices
A1 and A4 lie on one side of plane A2A3A5 (see Fig. 63).

Figure 63 (Sol. 8.29)

It follows from the condition of the problem hat the diagonals of the given
pentagon are equal because the tetrahedrons A4A2A3A5 and A1A3A2A5 are equal.
Since points A1 and A4 lie on one side of face A2A3A5 — an isosceles triangle — it
follows that A1 and A4 are symmetric through the plane that passes through the
midpoint of segment A2A3 perpendicularly to it. Therefore, points A1, A2, A3 and
A4 lie in one plane.

Now, by considering equal (plane) tetrahedrons A1A2A3A4 and A1A5A4A3 we
come to a contradiction.

Second solution. Tetrahedrons A1A2A3A4 and A2A1A5A4 are equal because
their corresponding edges are equal. These tetrahedrons are symmetric either
through the plane that passes through the midpoint of segment A1A2 perpendicu-
larly to it or through line A4M , where M is the midpoint of segment A1A2.

In the first case diagonal A3A5 is parallel to A1A2 and, therefore, 4 vertices of
the pentagon lie in one plane. If there are two diagonals with such a property, then
the pentagon is a plane one.

If there are 4 diagonals with the second property, then two of them go out of
one vertex, say, A3. Let M and K be the midpoints of sides A1A2 and A4A5, let L
and N be the midpoints of diagonals A1A3 and A3A5, respectively. Since segment
A3A5 is symmetric through line A4M , its midpoint N lies on this line. Therefore,
points A4, M , N , A3 and A5 lie in one plane; the midpoint K of segment A4A5

lies in the same plane.
Similarly, points A2, K, L, A3, A1 and M lie in one plane. Therefore, all the

vertices of the pentagon lie in plane A3KM .
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8.30. Let the inscribed circles S1 and S2 of triangles ABC and ADC be tangent
to side AC at points P1 and P2, respectively. Then

AP1 =
AB + AC −BC

2
and AP2 =

AD + AC − CD

2
.

Since AB − BC = AD − CD by the hypothesis, then AP = AP2, i.e., points P1

and P2 coincide. Therefore, circles S1 and S2 lie on one sphere (cf. Problem 4.12).
8.31. Let the sphere be tangent to sides AB, BC, CD and DA of the spatial

quadrilateral ABCD at points K, L, M and N , respectively. Then AN = AK,
BK = BL, CL = CM and DM = DN . Therefore,

AK

BK
· BL

CL
· CM

DM
· DN

AN
= 1.

Now, consider point N ′ at which plane KLM intersects with line DA. By making
use of the result of Problem 8.24 we get DN : AN = DN ′ : AN ′ and point N ′ lies
on segment AD. It follows that N = N ′, i.e., point N lies in plane KLM .

8.32. Since AN = AK, in plane DAB there is a circle S1 tangent to lines AD
and AB at points N and K, respectively. Similarly, in plane ABC there is a circle
S2 tangent to lines AB and BC at points K and L, respectively.

Let us prove that the sphere on which circles S1 and S2 lie is the desired one.
This sphere is tangent to lines AD, AB and BC at points N , K and L, respectively
(in particular, points B, C and D lie outside this sphere). It remains to verify that
this sphere is tangent to line CD at point M .

Let S3 be the section of the given sphere by plane BCD, let DN ′ be the tangent
to S3. Since DC = ±DM ±MC, DM = DN = DN ′ and MC = CL, then the
length of segment DC is equal to the sum or the difference of the lengths of the
tangents drawn to S3 from points C and D. This means that line CD is tangent
to S3. Indeed, let a = d2 − R2, where d is the distance from the center of S3 to
line CD and R be the radius of S3; let P be the base of the perpendicular dropped
from the center of S3 to line CD; let x = CD and y = DP . Then the lengths of
the tangents CL and DN ′ are equal to

√
x2 + a and

√
y2 + a. Let

|
√

x2 + a±
√

y2 + a| = |x± y| 6= 0.

Let us prove then that a = 0. By squaring both sides we get

√
(x2 + a)(y2 + a) = ±xy ± a.

By squaring once again we get

a(x2 + y2) = ±2axy.

If a 6= 0, then (x± y)2 = 0, i.e., x = ±y. The equality 2|√x2 + a| = 2|x| holds only
if a = 0.

8.33. a) On lines AB, BC, CD and DA, introduce coordinates taking points A,
B, C and D, respectively, for the origins and directions of rays AB, BC, CD and
DA for the positive directions. In accordance with the result of Problem 8.32 let
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us search for lines AB, BC, CD and DA for points K, L, M and N , respectively,
such that AN = AK, BK = BL, CL = CM and DM = DN , i.e.,

{AK} = x, {AN} = αx, {BC} = y, {BK} = βy,
{CM} = z, {CL} = γz, {DN} = u, {DM} = δu,

where α, β, γ, δ = ±1. Since {AB} = {AK} + {KB}, it follows that a = x + βy.
Similarly,

b = y − γz, c = z − δu, d = u− αx.

Therefore,
u = d + αx,
z = c + δd + δαx,
y = b + γc + γδd + γδαx;
x = a + βb + βγc + βγδd + βγδαx.

The latter relation yields

(1− αβγδ)x = a + βb + βγc + βγδd.

Thus, if 1− αβγδ = 0, then a relation of the form

a± b± c± d = 0

holds; it is also clear that the relation

a− b− c− d = 0

cannot be satisfied. Therefore, in our case αβγδ 6= 1; hence, αβγδ = −1. The
numbers α, β, γ = ±1 can be selected at random and the number δ is determined
by these numbers.

There are altogether 8 distinct sets of numbers α, β, γ, δ and for each set there
exists a unique solution x, y, z, u. Moreover, all the numbers x, y, z, u are nonzero
and, therefore, all the 8 solutions are distinct.

b) First solution. Let us consider, for example, the case when

a + c = b + d, i.e., a− b + c− d = 0.

In this case we have to set

β = −1, βγ = 1, βγδ = −1 and αβγδ = 1, i.e., α = β = γ = δ = −1.

The system of equations for x, y, z, u considered in the solution of heading a) has
infinitely many solutions:

u = d− x, z = c− d + x and y = b− c + d− x = a− x,

where x is arbitrary.
Other cases are treated similarly: if

a + b = c + d,
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Figure 64 (Sol. 8.33)

then
α = γ = −1 and β = δ = 1

and if
a + d = b + c,

then
α = γ = 1 and β = δ = −1.

Second solution. In each of the three cases when the indicated relations hold we
can construct a quadrilateral pyramid with vertex B whose lateral edges are equal
and parallel to the sides of the given quadrilateral, the base is a parallelogram and
the sum of the lengths of opposite edges are equal (see Fig. 64).

Therefore, there exists a ray with which the edges of the pyramid — hence,
the sides of the quadrilateral – form equal angles (Problem 6.63). Let plane Π
perpendicular to this ray intersect lines AB, BC, CD and DA at points P , Q, R
and S, respectively, and the corresponding lateral edges of the pyramid at points
P ′, Q′, R′ and S′. Since points P ′, Q′, R′ and S′ lie on one circle and lines PQ
and P ′Q′, QR and Q′R′, etc., are parallel, it follows that

∠(PQ, PS) = ∠(P ′Q′, P ′S′) = ∠(R′Q′, R′S′) = ∠(RQ,RS),

i.e., points P , Q, R and S lie on one circle (see $); let O be the center of this circle.
Since lines AP and AS form equal angles with plane Π, we deduce that AP = AS.
It follows that the corresponding sides of triangles APO and ASO are equal and,
therefore, the distances from point O to lines AB and AD are also equal.

We similarly prove that point O is equidistant from lines AB, BC, CD and DA,
i.e., the sphere centered at O whose radius is equal to the distance from O to any
of these lines is a desired one. By translating Π parallel to itself we get infinitely
many such spheres.

Remark. For every vertex of a spatial quadrilateral ABCD we can consider
two bisector planes that pass through the bisectors of its outer and inner angle
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perpendicularly to them. Clearly, O is the intersection point of bisector planes.
The following quadruples of bisector planes intersect along one line:

all the 4 inner ones if a + c = b + d;
the inner ones at vertices A and C and outer ones at vertices B and D if a+ b =

c + d;
the inner ones at vertices B and D and outer ones at vertices A and C if a+d =

b + c.
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CHAPTER 9. REGULAR POLYHEDRONS

§1. Main properties of regular polyhedrons

A convex polyhedral angle is called a regular one if all its planar angles are equal
and all the dihedral angles are also equal.

A convex polyhedron is called a regular one if all its faces and polyhedral angles
are regular and, moreover, all the faces are equal and polyhedral angles are also
equal. From the logic’s point of view this definition is unsuccessful: it contains a
lot of unnecessary. It would have been sufficient to require that the faces and the
polyhedral angles were regular; this implies their equality. But such subtleties are
not for the first acquaintance with regular polyhedrons. (We have devoted section
5 to the discussion of distinct equivalent definitions of regular polyhedrons.)

Figure 65 (§9)

There are only 5 distinct regular polyhedrons: tetrahedron, cube, octahedron,
dodecahedron and icosahedron; the latter three polyhedrons are plotted on Fig. 65.

This picture does not, however, tell us much: it cannot replace neither the proof
that there are no other regular polyhedrons nor even the proof of the fact that the
regular polyhedrons plotted actually exist. (A picture can depict an optical illusion,
cf. e.g., Escher’s drawings.) All this is to be proved.

In one of the books that survived from antiquity to nowadays is written that
octahedron and icosahedron were discovered by Plato’s student Teatet (410–368
B.C.) whereas cube, tetrahedron and dodecahedron were known to Pythagoreans
long before him. Many of historians of mathematics doubted the truthfulness of
these words; special incredulity were attributed to the fact that octahedron was dis-
covered later than dodecahedron. Really, the Egyptian pyramids were constructed
in ancient times and by joining mentally two pyramids we easily get an octahedron.

More accurate study, however, forces us to believe the words of the antient book.
These words can hardly be interpreted otherwise as follows: Teatet distinguished
a class of regular polyhedrons, i.e., with certain degree of rigor defined them, thus
discovering their common property and proved that there are only 5 distinct types
of regular polyhedrons.

Cube, tetrahedron and dodecahedron drew attention of geometers even before
Teatet but only as simple and interesting geometric objects, not as regular poly-
hedrons. The ancient Greek terminology testifies the interest to cube, tetrahedron
and dodecahedron: these polyhedrons had special names.

Typeset by AMS-TEX
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It is not wonder that cube and tetrahedron were always of interest to geometers;
dodecahedron requires some elucidation. Crystals of pyrite encountered in nature
have a shape close to that of dodecahedron. There survived also a dodecahedron
manufactured for unknown purposes by Etruskians around 500 B.C.

The form of dodecahedron is incomparably more attractive and mysterious than
the form of an octahedron. We think that dodecahedron should have intrigued
Pythagoreans because a regular 5-angled star that one can naturally inscribe in
every face of a dodecahedron was their symbol.

In the study of regular polyhedrons it is octahedron and icosahedron that cause
the most serious troubles. By connecting three regular triangles, or three squares, or
three regular pentagons and by continuing such construction we finally get a regular
tetrahedron, cube or dodecahedron; at every stage we get a rigid construction.

For an octahedron or icosahedron we have to connect 4 or 5 triangles, respec-
tively, i.e., the initial construction might collapse.

9.1. Prove that there can be no other regular polyhedrons except the above
listed ones.

9.2. Prove that there exists a dodecahedron — a regular polyhedron with pen-
tagonal faces and trihedral angles at vertices.

9.3. Prove that all the angles between nonparallel lines of a dodecahedron are
equal.

9.4. Prove that there exists an icosahedron — a regular polyhedron with trihe-
dral faces and 5-hedral angles at vertices.

9.5. Prove that for any regular polyhedron there exist:
a) a spere that passes through all its vertices (the circumscribed sphere);
b) a sphere tangent to all its faces (the inscribed sphere).
9.6. Prove that the center of the circumscribed sphere of a regular polyhedron is

its center of mass (i.e., the center of mass of the system of points with unit masses
at its vertices).

The center of the circumscribed sphere of a regular polyhedron that coincides
with the center of the inscribed sphere and the center of mass, is called the center
of the regular polyhedron.

§2. Relations between regular polyhedrons

9.7. a) Prove that it is possible to select 4 vertices of the cube so that they would
be vertices of a regular tetrahedron. In how many ways can this be performed?

b) Prove that it is possible to select 4 planes of the faces of the octahedron so
that they would be planes of faces of a regular tetrahedron. In how many ways can
this be done?

9.8. Prove that on the edges of the cube one can select 6 points so that they
will be vertices of an octahedron.

9.9. a) Prove that it is possible to select 8 vertices of the dodecahedron so that
they will be vertices of a cube. In how many ways can this be done?

b) Prove that it is possible to select 4 vertices of a dodecahedron so that they
will be vertices of a regular tetrahedron.

9.10. a) Prove that it is possible to select 8 planes of faces of an icosahedron so
that they will be the planes of the faces of an octahedron. In how many ways can
this be done?
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b) Prove that it is possible to select 4 planes of the faces of an icosahedron so
that they will be the planes of the faces of a regular tetrahedron.

* * *

9.11. Consider a convex polyhedron whose vertices are the centers of faces of
the regular polyhedron. Prove that this polyhedron is also a regular one. (This
polyhedron is called the polyhedron dual to the initial one).

9.12. a) Prove that the dual to the tetrahedron is a tetrahedron.
b) Prove that cube and octahedron are dual to each other.
c) Prove that dodecahedron and icosahedron are dual to each other.
9.13. Prove that if the radii of the inscribed spheres of two dual to each other

regular polyhedrons are equal, then a) the radii of their circumscribed spheres are
equal; b) the radii of circumscribed spheres of their faces are equal.

9.14. A face of a dodecahedron and a face of an icosahedron lie in one plane
and, moreover, their opposite faces also lie in one plane. Prove that all the other
vertices of the dodecahedron and icosahedron lie in two planes parallel to these
faces.

§3. Projections and sections of regular polyhedrons

9.15. Prove that the projections of a dodecahedron and an icosahedron to planes
parallel to their faces are regular polygons.

9.16. Prove that the projection of a dodecahedron to a plane perpendicular to
the line that passes through its center and the midpoints of an edge is a hexagon
(and not a decagon).

9.17. a) Prove that the projection of an icosahedron to the plane perpendicular
to a line that passes through its center and a vertex is a regular decagon.

b) Prove that the projection of a dodecahedron to a plane perpendicular to a
line that passes through its center and a vertex is an irregular dodecagon.

* * *

9.18. Is there a section of a cube which is a regular hexagon?
9.19. Is there a section of an octahedron which is a regular hexagon?
9.20. Is there a section of a dodecahedron which is a regular hexagon?
9.21. Faces ABC and ABD of an icosahedron have a common edge, AB.

Through vertex D the plane is drawn parallel to plane ABC. Is it true that the
section of the icosahedron with this plane is a regular hexagon?

§4. Self-superimpositions (symmetries) of regular polyhedrons

A motion that turns the polyhedron into itself (i.e., a symmetry) will be called
a self-superimposition.

9.22. Which regular polyhedrons have a center of symmetry?
9.23. A convex polyhedron is symmetric relative a plane. Prove that either this

plane passes through the midpoint of its edge or is the plane of symmetry of one of
the polyhedral angles at its vertex.

9.24. a) Prove that for any regular polyhedron the planes passing through the
midpoints of its edges perpendicularly to them are the planes of symmetry.
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b) Which regular polyhedrons have in addition to the above other planes of
symmetry?

9.25. Find the number of planes of symmetry of each of the regular polyhedrons.
9.26. Prove that any axis of rotation of a regular polyhedron passes through its

center and either a vertex, or the center of an edge, or the center of a face.
9.27. a) How many axes of symmetry has each of the regular polyhedrons?
b) How many other axes of rotation has each of the regular polyhedrons?
9.28. How many self-superimpositions are there for each of the regular polyhe-

drons?

§5. Various definitions of regular polyhedrons

9.29. Prove that if all the faces of a convex polyhedron are equal regular polygons
and all its dihedral angles are equal, then this polyhedron is a regular one.

9.30. Prove that if all the polyhedral angles of a convex polyhedron are regular
ones and all its faces are regular polygons, then this polyhedron is a regular one.

9.31. Prove that if all the faces of a convex polyhedron are regular polygons
and the endpoints of the edges that go out of every vertex form a regular polygon,
then this polyhedron is a regular one.

* * *

9.32. Is it necessary that a convex polyhedron all faces of which and all the
polyhedral angles of which are equal is a regular one?

9.33. Is it necessary that a convex polyhedron which has equal a) all the edges
and all the dihedral angles; b) all the edges and all the polyhedral angles is a regular
one?

Solutions

9.1. Consider an arbitrary regular polyhedron. Let all its faces be regular n-
gons and all the polyhedral angles contain m faces each. Each edge connects two
vertices and from every vertex m edges go out. Therefore, 2E = mV . Similarly,
every edge belongs to two faces and each face has n edges each. Therefore, 2E = nF .
Substituting these expressions into Euler’s formula V − E + F = 2 (see Problem
8.14) we get 2

mE − E + 2
nE = 2, i.e.,

1
n

+
1
m

=
1
2

+
1
E

>
1
2
.

Therefore, either n < 4 or m < 4. Thus, one of the numbers m and n is equal to 3;
let the other number be equal to x. Now, we have to find all the integer solutions
of the equation

1
3

+
1
x

=
1
2

+
1
E

.

It is clear that x = 6 E
E+6 < 6, i.e., x = 3, 4, 5. Thus, there are only 5 distinct pairs

of numbers (m,n):
1) (3, 3); the corresponding polyhedron is tetrahedron; it has 6 edges, 4 faces

and 4 vertices;
2) (3, 4); the corresponding polyhedron is cube, it has 12 edges, 6 faces and 8

vertices;
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3) (4, 3); the corresponding polyhedron is octahedron. It has 12 edges, 8 faces
and 6 vertices;

4) (3, 5); the corresponding polyhedron is dodecahedron, it has 30 edges, 12
faces and 20 vertices;

5) (5, 3); the corresponding polyhedron is icosahedron. It has 30 edges, 20 faces
and 12 vertices.

The number of edges, faces and vertices here were computed according to the
formulas

1
n

+
1
m

=
1
2

+
1
E

, F =
2
n

E and V = 2
mE.

Remark. The polyhedrons of each of the above described type are determined
uniquely up to similarity. Indeed, with the help of a similarity transformation
we can identify a pair of faces of two polyhedrons of the same type so that the
polyhedrons lie on one side of the plane of the identified faces. If the polyhedral
angles are equal, then, as is easy to verify, the polyhedrons coincide.

The equality of the polyhedral angles is obvious for the trihedral angles, i.e., for
tetrahedron, cube and dodecahedron. For the octahedron and icosahedron we can
identify the polyhedrons dual to them; hence, the initial polyhedrons are also equal
(cf. Problems 9.5, 9.11 and 9.12).

9.2. Proof is based on the properties of the figure that consists of three equal
regular pentagons with a common vertex every two of which have a common edge.

In the solution of Problem 7.33 it was proved that the segments depicted on Fig.
53 by solid lines constitute a right trihedral angle, i.e., the considered figure can be
applied to a cube so that these segments coincide with the cube’s edges that go out
of one vertex (Fig. 66). Let us prove that the obtained figure can be complemented
to a dodecahedron with the help of symmetries through the planes parallel to the
cube’s faces and passing through its center.

Figure 66 (Sol. 9.2)

The sides of a pentagon parallel to the edges of the cube are symmetric through
the indicated planes. Besides, the distances from each of these sides to the face of
the cube with which it is connected by three segments are equal (they are equal
to
√

a2 − b2, where a is the length of the segment that connects the vertex of the
regular pentagon with the midpoint of the neighbouring side, b is a half length of the
diagonal of the cube’s face). Therefore, with the help of the indicated symmetries
the considered figure can actually be complemented to a polyhedron. It remains
to show that this polyhedron is a regular one, i.e., the dihedral angles at edges pi

that go out of the vertices of the cube are equal to the dihedral angles at edges qj

parallel to the faces of the cube.



SOLUTIONS 145

To this end consider the symmetry through the plane that passes through the
midpoint of edge pi perpendicularly to it. This symmetry sends edge qj that goes
out of the second endpoint of edge pi and is parallel to a face of the cube to edge
pk that goes out of a vertex of the cube.

9.3. For the neighbouring faces this statement is obvious. If F1 and F2 are
non-neighbouring faces of the dodecahedron, then the face parallel to F1 will be
neighbouring to F2.

9.4. Let us construct an icosahedron by arranging its vertices on the edges of
an octahedron. Let us place arrows on the edges of the octahedron as shown on
Fig. 67 a). Now, let us divide all the edges in the same ratio λ : (1−λ) taking into
account their orientation. The obtained points are vertices of a convex polyhedron
with dihedral faces and 5-hedral angles at the vertices (Fig. 67 b)). Therefore, it
suffices to select λ so that this polyhedron were a regular one.

Figure 67 (Sol. 9.4)

It has two types of edges: those that belong to the faces of the octahedron and
those that do not belong to them. The squared length of any edge that belongs to
a face of the octahedron is equal to

λ2 + (1− λ)2 − 2λ(1− λ) cos 60◦ = 3λ2 − 3λ + 1

and the squared length of any edge that does not belong to the face of the octahe-
dron is equal to

2(1− λ)2 = 2− 4λ + 2λ2.

(To prove the latter equality we have to take into account that the angle between
non-neighbouring edges of the octahedron that exit one vertex is equal to 90◦.)

Therefore, if 3λ2 − 3λ + 1 = 2 − 4λ + 2λ2, i.e., λ =
√

5−1
2 (for obvious reasons

we disregard the negative root), then all the faces of the obtained polyhedron are
regular triangles. It remains to show that all the dihedral angles at its edges are
equal. This easily follows from the fact that (for any λ) the vertices of the obtained
polyhedron are equidistant from the center of the octahedron, i.e., belong to a
sphere.

9.5. Let us draw perpendiculars to all the faces through their centers. It is easy
to see that for two neighbouring faces such perpendiculars intersect at one point
whose distance from each of the faces is equal to a cotϕ, where a is the distance
from the center of the face to its sides and ϕ is a half of the dihedral angle between
the faces of the polyhedron.
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To this end we have to consider the section that passes through the centers of
two neighbouring faces and the midpoint of their common edge (Fig. 68). Thus, on
each of our perpendiculars we can mark a point and for neighbouring faces these
points coincide. Therefore, all these perpendiculars have a common point O.

Figure 68 (Sol. 9.5)

It is clear that the distance from O to each vertex of the polyhedron is equal to
a/ cos ϕ and the distance to each face is equal to −a cot ϕ, i.e., point O serves as
the center of the circumscribed as well as the center of the inscribed sphere.

9.6. We have to show that the sum of vectors that connect the center of the
circumscribed sphere of the regular polyhedron with its vertices is equal to zero.
Denote this sum by x. Any rotation that identifies the polyhedron with itself
preserves the center of the inscribed sphere and, therefore, sends vector x into
itself.

But a nonzero vector can only pass into itself under a rotation about an axis
parallel to it. It remains to notice that any regular polyhedron has several axes the
rotations about which turn it into itself.

9.7. a) If ABCDA1B1C1D1 is a cube, then AB1CD1 and A1BC1D are regular
tetrahedrons.

b) It is easy to verify that the midpoints of the edges of a regular tetrahedron are
vertices of an octahedron. This shows that we can select 4 faces of an octahedron
so that they were planes of faces of a regular tetrahedron; one can do this in two
ways.

9.8. Let the edge of cube ABCDA1B1C1D1 be of length 4a. On the edges that
exit vertex A, take points distant from it by 3a. Similarly, take 3 points on the
edges that exit vertex C1. Making use of the identity

32 + 32 = 1 + 42 + 1

it is easy to verify that the lengths of all edges of the polyhedron with vertices in
the selected points are equal to 3

√
2a.

9.9. a) It is clear from the solution of Problem 9.2 that there exists a cube whose
vertices are in the vertices of a dodecahedron. On each face of the dodecahedron
there is a vertex of a cube. It is also clear that choosing for an edge of the cube any
of the 5 diagonals of a face of the dodecahedron we uniquely fix the whole cube.
Therefore, there are 5 distinct cubes with vertices in vertices of the dodecahedron.
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b) Placing the cube so that its vertices are in vertices of the dodecahedron we
can then place a regular tetrahedron so that its vertices are in vertices of this cube.

9.10. a) It is clear from the solution of Problem 9.4 that one can select 8 faces
of an icosahedron so that they are faces of an octahedron. Then for every vertex of
the icosahedron there exists exactly one edge (having that vertex as an endpoint)
that does not lie in the plane of the face of the octahedron. It is also clear that the
selection of any of the 5 edges that go out of the vertex of the icosahedron is the
edge that does not belong to the plane of the octahedron’s face uniquely determines
the octahedron. Therefore, there are 5 distinct octahedrons the planes of whose
faces pass through the faces of the icosahedron.

b) Selecting 8 planes of the icosahedron’s faces so that they are also planes of
an octahedron’s faces we can select from them 4 planes so that they are planes of
a regular tetrahedron’s faces.

9.11. Consider the line that connects a vertex of the initial polyhedron with its
center. The rotation about this line under which the polyhedron is sent into itself
sends the centers of faces adjacent to the vertex mentioned above into themselves,
i.e., these centers are vertices of a regular polyhedron.

Similarly, consider the line connecting the center of a face of the initial polyhe-
dron with its center. A rotation about this line demonstrates that the polyhedral
angles of the dual polyhedron are also regular ones. Since any two polyhedral an-
gles of the initial polyhedron can be identified by a motion, all the faces of the dual
polyhedron are equal. And since any two faces of the initial polyhedron can be
identified, all the polyhedral angles of the dual polyhedron are equal.

9.12. To prove this statement, it suffices to notice that if the initial polyhedron
has m-hedral angles at vertices and n-gonal faces, then the dual polyhedron has
n-hedral angles at vertices and m-gonal faces.

Remark. The solutions of Problems 9.2 and 9.4 are, actually, two distinct solu-
tions of the same problem. Indeed, if there exists a dodecahedron then there exists
the polyhedron dual to it — an icosahedron; and the other way round.

9.13. a) Let O be the center of the initial polyhedron, A one of its vertices, B the
center of one of the faces with vertex A. Consider the face of the dual polyhedron
formed by the centers of the faces of the initial polyhedron adjacent to vertex A.
Let C be the center of this face, i.e., the intersection point of this face with line
OA.

Clearly, AB ⊥ OB and BC ⊥ OA. Therefore, OC : OB = OB : OA, i.e.,
r2 : R2 = r1 : R1, where r1 and R1 (resp. r2 and R2) are the radii of the inscribed
and circumscribed spheres of the initial polyhedron (resp. its dual).

b) If the distance from the plane to the center of the sphere of radius R is equal
to r, then the plane cuts on the sphere a circle of radius

√
R2 − r2. Therefore,

the radius of the circumscribed circles of the faces of the polyhedron inscribed into
the sphere of radius R and circumscribed about the sphere of radius r is equal to√

R2 − r2. In particular, if the values of R and r are equal for two polyhedrons,
then the radii of the circumscribed circles of their faces are also equal.

9.14. If the dodecahedron and the icosahedron are inscribed in one sphere, then
the radii of their inscribed spheres are equal (Problem 9.13 a), i.e., the distances
between their opposite faces are equal. For a dodecahedron (or an icosahedron) we
will call the intersection point of the circumscribed sphere with the line that passes
through its center and the center of one of its faces the center of a spherical face of
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the dodecahedron (icosahedron).
Fix one of the centers of the spherical faces of the dodecahedron and consider

the distance from it to the vertices; among these distances there are exactly four
distinct ones. To solve the problem, it suffices to show that this set of four distinct
distances coincides with a similar set for the icosahedron.

It is easy to verify that the centers of spherical faces of the dodecahedron are
the vertices of an icosahedron and the centers of spherical faces of the obtained
icosahedron are the vertices of the initial dodecahedron. Therefore, any distance
between the center of a spherical face and a vertex of the dodecahedron is the
distance between a vertex and the center of a spherical face of an icosahedron.

9.15. To prove the statement, it suffices to notice that these polyhedrons are
sent into themselves under the rotation that identifies the projection of the upper
face with the projection of the lower face. Thus, the projection of the dodecahedron
is a decagon that is sent into itself under a rotation by 36◦ (Fig. 69 a)) and the
projection of the icosahedron is a hexagon that is sent into itself under the rotation
by 60◦ (Fig. 69 b)).

Figure 69 (Sol. 9.15)

9.16. Consider a cube whose vertices are in vertices of the dodecahedron (cf.
Problem 9.2). In our problem we are talking about the projection to the plane
parallel to a face of this cube. Now, it is easy to see that the projection of the
dodecahedron is indeed a hexagon (Fig. 70).

Figure 70 (Sol. 9.16)

9.17. a) The considered projection of icosahedron turns into itself under the
rotation by 36◦ (this rotation sends the projections of the upper faces into the
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Figure 71 (Sol. 9.17)

projections of the lower faces). Therefore, this projection is a regular decagon (Fig.
71 a)).

b) The considered projection of the dodecahedron is a dodecagon that turns into
itself under the rotation through an angle of 60◦ (Fig. 71 b)). A half of its sides are
the projections of edges parallel to the plane of the projection and the other half
of its sides are the projections of edges not parallel to the plane of the projection.
Therefore, this dodecagon is an irregular one.

9.18. Yes, there is. The midpoints of the edges of the cube indicated by thick
dots on Fig. 72 are the vertices of a regular hexagon. This follows from the fact
that every side of this hexagon is parallel to a side of an equilateral triangle PQR
and its length is equal to half the length of that triangle’s side

Figure 72 (Sol. 9.18)

9.19. There exists. Let us draw the plane parallel to two opposite faces of an
octahedron and equidistant from them. It is easy to verify that the section with this
plane is a regular hexagon (on Fig. 73 the projection onto this plane is depicted).

9.20. There exists. Take three pentagonal faces with common vertex A and
consider the section with the plane that intersects these faces and is parallel to the
plane in which three pairwise common vertices of the considered faces lie (Fig. 74).
This section is a hexagon with pairwise parallel opposite sides.

After a rotation through an angle of 120◦ about the axis that passes through
vertex A perpendicularly to the intersecting plane the dodecahedron and the inter-
secting plane turn into themselves.

Therefore, the section is a convex hexagon with angles 120◦ each the lengths of
whose sides take two alternating values. In order for this hexagon to be regular
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Figure 73 (Sol. 9.19)

Figure 74 (Sol. 9.20)

it suffices for these two values to be equal. As the intersecting plane moves from
one of its extreme positions to another one while moving away from vertex A, the
first of these values grows from 0 to d while the second one diminishes from d to
a, where a is the length of the dodecahedron’s edge and d is the length of its face’s
diagonal (d > a). Therefore, at some moment these values become equal, i.e., the
section is a regular hexagon.

9.21. No, this is false. Consider the projection of the icosahedron to plane ABC.
It is a regular hexagon (cf. Problem 9.15 and Fig. 69). Therefore, the considered
section is a regular hexagon only if all the 6 vertices connected by edges with points
A, B and C (and distinct from A, B and C) lie in one plane. But it is easy to see
that this is false (otherwise the vertices of the icosahedron would have lain on three
parallel planes).

9.22. It is easy to verify that all the regular polyhedrons, except tetrahedron,
have a center of symmetry.

9.23. A plane of symmetry divides a polyhedron into two parts and, therefore,
it intersects at least one edge. Let us consider two cases.

1) The plane of symmetry passes through a vertex of the polyhedron. Then it is
a plane of symmetry of the polyhedral angle at this vertex.

2) The plane of symmetry passes through an inner point of an edge. Then this
edge turns into itself under the symmetry through this plane, i.e., the plane passes
through the midpoint of the edge perpendicularly to it.

9.24. a) For the tetrahedron, cube and octahedron the statement of the problem
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is obvious. For the dodecahedron and icosahedron we have to make use of solutions
of Problems 9.2 and 9.4, respectively. In doing so it is convenient to consider for
the dodecahedron the plane that passes through the midpoint of an edge parallel to
the cube’s face and for the icosahedron a plane that passes through the midpoint
of an edge that does not lie in the plane of the octahedron’s face.

b) We have to find out for which polyhedral angles of regular polyhedrons there
exist planes of symmetry that do not pass through the midpoints of edges. For
a tetrahedron, dodecahedron and icosahedron,0 any plane of symmetry of a poly-
hedral angle does pass through the midpoints of its edges. For a cube and an
octahedron there are planes of symmetry of polyhedral angles that do not pass
through the midpoints of edges. These planes pass through the pairs of opposite
edges.

9.25. First, let us consider the planes of symmetry that pass through the mid-
points of edges perpendicularly to them. We have to find out through how many
midpoints such a plane passes simultaneously.

It is easy to verify that for the tetrahedron each plane passes through the mid-
point of one edge for the ocahedron, dodecahedron and icosahedron through the
midpoints of two edges, and for the cube through the midpoints of 4 edges. There-
fore, the number of such planes for the tetrahedron is equal to 4 for the cube it
is equal to 12

4 = 3, for the octahedron to 12
2 = 6 and for the dodecahedron and

icosahedron it is equal to 30
2 = 15.

The cube and the octahedron have another planes of symmetry as well; these
planes pass through the pairs of opposite edges and for the cube such a plane
passes through 2 edges, for the octahedron it passes through 4 edges. Therefore,
the number of such planes for the cube is equal to 12

2 = 6 and for the octahedron
it is equal to 12

4 = 3. Altogether the cube and the octahedron have 9 planes of
symmetry each.

9.26. An axis of rotation intersects the surface of the polyhedron at two points.
Let us consider one of these points. Three variants are possible:

1) The point is a vertex of the polyhedron.
2) The point belongs to an edge of the polyhedron but is not its vertex. Then

this edge turns into itself under a rotation about it. Therefore, this point is the
midpoint of the edge and the angle of the rotation is equal to 180◦.

3) The point belongs to a face of the polyhedron but does not belong to an edge.
Then this face turns into itself under a rotation and, therefore, this point is the
center of the face.

9.27. a) For every regular polyhedron the lines that pass through the midpoints
of opposite edges are the axes of symmetry. There are 3 such axes in a tetrahedron;
6 in a cube and an octahedron; 15 in a dodecahedron and icosahedron. Moreover,
in the cube the lines that pass through the centers of faces and in the octahedron
the lines that pass through vertices are axes of symmetry; there are 3 such axes for
each of these polyhedrons.

b) A line will be called an axis of rotation of order n (for the given figure) if after
the rotation through an angle of 2π

n the figure turns into itself. The lines that pass
through vertices and the centers of faces of tetrahedron are axes of order 3; there
are 4 such axes.

The lines that pass through the pairs of vertices of cube are axes of order 3;
there are 4 such axes. The lines that pass through the pairs of centers of faces of
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the cube are axes of order 4; there are 3 such axes.
The lines that pass through the pairs of centers of faces of the octahedron are

axes of order 3; there are 4 such axes. The lines that pass through the pairs of
vertices of the octahedron are axes of order 4; there are 3 such axes.

The lines that pass through the pairs of vertices of the dodecahedron are axes of
order 3; there are 10 such axes. The lines that pass through the pairs of centers of
faces of the dodecahedron are axes of order 5; there are 6 such axes.

The lines that pass through the pairs of centers of faces of the icosahedron are
axes of order 3; there are 10 such axes. The lines that pass through the pairs of
vertices of the icosahedron are axes of order 5; there are 6 such axes.

9.28. Any face of a regular polyhedron can be transported by a motion into any
other face. If the faces of a polyhedron are n-gonal ones, then there are exactly 2n
motions that identifies the polyhedron with itself and preserves one of the faces: n
rotations and n symmetries through planes. Therefore, the number of motions (the
identical transformation included) is equal to 2nF , where F is the number of faces.

Thus, the number of motions of the tetrahedron is equal to 24, that of the cube
and octahedron is equal to 48, that of the dodecahedron and the icosahedron is
equal to 120.

Remark. By similar arguments we can show that the number of motions of a
regular polyhedron is equal to the doubled product of the number of its vertices by
the number of faces of its polyhedral angles.

9.29. We have to prove that all the polyhedral angles of our polyhedron are
equal. But its dihedral angles are equal by the hypothesis and planar angles are
the angles of equal polygons.

9.30. We have to prove that all the faces are equal and the polyhedral angles
are also equal. First, let us prove the equality of faces. Let us consider all the faces
at a vertex. The polyhedral angle of this vertex is a regular one and, therefore, all
its planar angles are equal, hence, all the angles of the considered regular polygons
are also equal. Moreover, all the sides of the regular polygons with a common side
are equal. Therefore, all the considered polygons are equal; hence, all the faces of
the polyhedron are equal.

Now, let us prove that the polyhedron angles are equal. Let us consider all the
polyhedral angles at vertices of one of the faces. One of the plane angles of each of
them is the angle of this face and, therefore, all the plane angles of the considered
polyhedral angles are equal. Moreover, the polyhedral angles with vertices are the
endpoints of one edge have a common dihedral angle, hence, all their dihedral angles
are equal. Therefore, all the considered polyhedral angles are equal; consequently,
all the polyhedral angles of our polyhedron are equal.

9.31. We have to prove that all the polyhedral angles of our polyhedron are
right ones. Let us consider the endpoints of all the edges that exit a vertex. As
follows from the hypothesis of the problem, the polyhedron with vertices at these
points and at point A is a pyramid whose ase is a regular polygon and all the edges
of this pyramid are equal.

Therefore, point A belongs to the intersection of the planes that pass through
the midpoints of the sides of the base perpendicular to them, i.e., it lies on the
perpendicular to the base passing through the center of the base. Therefore, the
pyramid is a regular one; it follows that the polyhedral angle at its vertex is a
regular one.
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9.32. No, not necessarily. Let us consider a (distinct from a cube) rectangular
parallelepiped ABCDA1B1C1D1. In tetrahedron AB1CD1 all the faces and the
trihedral angles are equal but it is not a regular one.

9.33. No, not necessarily. Let us consider the convex polyhedron whose vertices
are the midpoints of cube’s edges. It is easy to verify that all the edges, all the
dihedral angles and all the polyhedral angles of this polyhedron are equal.
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CHAPTER 10. GEOMETRIC INEQUALITIES

§1. Lengths, perimeters

10.1. Let a, b and c be the lengths of sides of a parallelepiped, d that of its of
its diagonals. Prove that

a2 + b2 + c2 ≥ d2

3
.

10.2. Given a cube with edge 1, prove that the sum of distances from an
arbitrary point to all its vertices is no less than 4

√
3.

10.3. In tetrahedron ABCD the planar angles at vertex A are equal to 60◦.
Prove that

AB + AC + AD ≤ BC + CD + DB.

10.4. From points A1, A2 and A3 that lie on line a perpendiculars AiBi are
dropped to line b. Prove that if point A2 lies between A1 and A3 then the length
of segment A2B2 is confined between the lengths of segments A1B1 and A3B3.

10.5. A segment lies inside a convex polyhedron. Prove that the segment is not
longer than the longest segment with the endpoints at vertices of the polyhedron.

10.6. Let P be the projection of point M to the plane that contains points A,
B and C. Prove that if one can construct a triangle from segments PA, PB and
PC, then from segments MA, MB and MC one can also construct a triangle.

10.7. Points P and Q are taken inside a convex polyhedron. Prove that one of
the vertices of the polyhedron is closer to Q than to P .

10.8. Point O lies inside tetrahedron ABCD. Prove that the sum of the lengths
of segments OA, OB, OC and OD does not exceed the sum of the lengths of
tetrahedron’s edges.

10.9. Inside the cube with edge 1 several segments lie and any plane parallel to
one of the cube’s faces does not intersect more than one segment. Prove that the
sum of the lengths of these segments does not exceed 3.

10.10. A closed broken line passes along the surface of a cube with edge 1 and
has common points with all the cube’s faces. Prove that its length is no less than
3
√

2.
10.11. A tetrahedron inscribed in a sphere of radius R contains the center of

the sphere. Prove that the sum of the lengths of the tetrahedron’s edges is greater
than 6R.

10.12. The section of a regular tetrahedron is a quadrilateral. Prove that the
perimeter of this quadrilateral is confined between 2a and 3a, where a is the length
of the tetrahedron’s edge.

§2. Angles

10.13. Prove that the sum of the angles of a spatial quadrilateral does not
exceed 360◦.

10.14. Prove that not more than 1 vertex of a tetrahedron has a property that
the sum of any two of plane angles at this vertex is greater than 180◦.
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10.15. Point O lies on the base of triangular pyramid SABC. Prove that the
sum of the angles between ray SO and the lateral edges is smaller than the sum of
the plane angles at vertex S while being greater than half this sum.

10.16. a) Prove that the sum of the angles between the edges of a trihedral
angle and the planes of the faces opposite to them does not exceed the sum of its
plane angles.

b) Prove that if dihedral angles of a trihedral angle are acute ones then the sum
of the angles between its edges and planes of faces opposite to them is not less than
a half sum of its plane angles.

10.17. The diagonal of a rectangular parallelepiped constitutes angles α, β and
γ with its edges. Prove that α + β + γ < π.

10.18. All the plane angles of a convex quadrangular angle are equal to 60◦.
Prove that the angles between its opposite edges cannot be neither simultaneously
acute nor simultaneously obtuse.

10.19. Prove that the sum of all the angles that have a common vertex inside a
tetrahedron and subtend the edges of that tetrahedron is greater than 3π.

10.20. a) Prove that the sum of dihedral angles at edges AB, BC, CD and DA
of tetrahedron ABCD is smaller than 2π.

b) Prove that the sum of dihedral angles of a tetrahedron is confined between
2π and 3π.

10.21. The space is completely covered by a finite set of (infinite one way) right
circular coni with angles ϕ1, . . . , ϕn. Prove that

ϕ2
1 + · · ·+ ϕ2

n ≥ 16.

§3. Areas

10.22. Prove that the area of any face of a tetrahedron is smaller(?) than the
sum of the areas of its other three faces.

10.23. A convex polyhedron lies inside another polyhedron. Prove that the
surface area of the outer polyhedron is greater than the surface area of the inner
one.

10.24. Prove that for any tetrahedron there exist two planes such that the ratio
of the areas of the tetrahedron’s projections to them is not less than

√
2.

10.25. a) Prove that the area of any triangular section of a tetrahedron does
not exceed the area of one of the tetrahedron’s faces.

b) Prove that the area of any quadrangular section of a tetrahedron does not
exceed the area of one of the tetrahedron’s faces.

10.26. A plane tangent to the sphere inscribed in a cube cuts off it a triangular
pyramid. Prove that the surface area of this pyramid does not exceed the area of
the cube’s face.

§4. Volumes

10.27. On each edge of a tetrahedron a point is fixed. Consider four tetrahedrons
one of the vertices of each of which is a vertex of the initial tetrahedron and the
remaining vertices are fixed points belonging to the edges that go out of this vertex.
Prove that the volume of one of the tetrahedrons does not exceed 1

8 of the initial
tetrahedron’s volume.
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10.28. The lengths of each of the 5 edges of a tetrahedron do not exceed 1.
Prove that its volume does not exceed 1

8 .
10.29. The volume of a convex polyhedron is equal to V and its surface area is

equal to S.
a) Prove that if a sphere of radius r is placed inside the polyhedron, then V

S ≥ r
3 .

b) Prove that a sphere of radius V
S can be placed inside the polyhedron.

c) A convex polyhedron is placed inside another one. Let V1 and S1 be the
volume and the surface area of the outer polyhedron, V2 and S2 same of the outer
one. Prove that

3V1

S1
≥ V2

S2
.

10.30. Inside a cube, a convex polyhedron is placed whose projection onto each
face of the cube coincides with this face. Prove that the volume of the polyhedron
is not less than 1

3 the volume of the cube.
10.31. The areas of the projections of the body to coordinate axes are equal to

S1, S2 and S3. Prove that its volume does not exceed
√

S1S2S3.

§5. Miscellaneous problems

10.32. Prove that the radius of the inscribed circle of any face of a tetrahedron
is greater than the radius of the sphere inscribed in the tetrahedron.

10.33. On the base of a triangular pyramid OABC with vertex O point M is
taken. Prove that

OM · SABC ≤ OA · SMBC + OB · SMAC + OC · SMAB .

10.34. Let r and R be the radii of the inscribed and circumscribed spheres of a
regular quadrangular pyramid. Prove that

R

r
≥ 1 +

√
2.

10.35. Is it possible to cut a hole in a cube through which another cube of the
same size can be pulled?

10.36. Sections M1 and M2 of a convex centrally symmetric polyhedron are
parallel and M1 passes through the center of symmetry.

a) Is it true that the area of M1 is not less than the area of M2?
b) Is it true that the radius of the minimal circle that contains M1 is not less

than the radius of the minimal circle that contains M2?
10.37. A convex polyhedron sits inside a sphere of radius R. The length of its

i-th edge is equal to li and the dihedral angle at this edge is equal to ϕi. Prove
that ∑

li(π − ϕi) ≤ 8πR.

Problems for independent study

10.38. Triangle A′B′C ′ is a projection of triangle ABC. Prove that the hights
of triangle A′B′C ′ are no longer than the corresponding hights of triangle ABC.

10.39. A sphere is inscribed into a truncated cone. Prove that the surface area
of the ball is smaller than the area of the lateral surface of the cone.
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10.40. The largest of the perimeters of tetrahedron’s faces is equal to d and the
sum of the lengths of its edges is equal to D. Prove that

3d < 2D ≤ 4d.

10.41. Inside tetrahedron ABCD a point E is fixed. Prove that at least one
of segments AE, BE and CE is shorter than the corresponding segment AD, BD
and CD.

10.42. Is it possible to place 5 points inside a regular tetrahedron with edge 1
so that the pairwise distances between these points would be not less than 1?

10.43. The plane angles of a trihedral angle are α, β and γ. Prove that

cos2 α + cos2 β + cos2 γ ≤ 1 + 2 cos α cosβ cos γ.

10.44. The base of pyramid ABCDE is a parallelogram ABCD. None of the
lateral faces is an acute triangle. On edge DC, there is a point M such that line
EM is perpendicular to BC. Moreover, diagonal AC of the base and lateral edges
ED and EB are connected by relations AC ≥ 5

4EB ≥ 5
3ED. Through vertex B

and the midpoint of one of lateral edges a section is drawn; the section is an isosceles
trapezoid. Find the ratio of the area of the section to the area of the pyramid’s
base.

Solutions

10.1. Since d ≤ a + b + c, it follows that

d2 ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca ≤ 3(a2 + b2 + c2).

10.2. If PQ is the diagonal of cube with edge 1 and X is an arbitrary point,
then PX + QX ≥ PQ =

√
2. Since cube has 4 diagonals, the sum of the distances

from X to all the vertices of the cube is not less than 4
√

3.
10.3. First, let us prove that if ∠BAC = 60◦, then AB + AC ≤ 2BC. To this

end let us consider points B′ and C ′ symmetric to points B and C through the
bisector of angle A. Since in any convex quadrilateral the sum of the lengths of
diagonals is greater than the sum of the lengths of a pair of opposite sides,

BC + B′C ′ ≥ CC ′ + BB′

(the equality is attained if AB = AC). It remains to notice that B′C ′ = BC,
CC ′ = AC and BB′ = AB.

We similarly prove inequalities AC + AD ≤ 2CD and AD + AB ≤ 2DB. By
adding up these inequalities we get the desired statement.

10.4. Let us draw through line b a plane Π parallel to a. Let Ci be the projec-
tion of point Ai to plane Π. By the theorem on three perpendiculars, CiBi ⊥ b;
therefore, the length of segment B2C2 is confined between the length of B1C1 and
that of B3C3; the lengths of all three segments AiCi are equal.

10.5. In the proof we will several times make use of the following planimetric
statement:

If point X lies on side BC of triangle ABC, then either AB ≥ AX or AC ≥ AX.
(Indeed, one of the angles BXA or CXA is not less than 90◦; if ∠BXA ≥ 90◦,

then AB ≥ AX and if ∠CAX ≥ 90◦, then AC ≥ AX.)
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Let us extend the given segment to its intersection with the polyhedron’s faces
at certain points P and Q; this might only increase the length of the segment. Let
MN be an arbitrary segment with the endpoints on the edges of the polyhedron;
let P belong to MN . Then either MQ ≥ PQ or NQ ≥ PQ.

Let, for definiteness, MQ ≥ PQ. Point M lies on an edge AB and either
AQ ≥ MQ or BQ ≥ MQ. We have replaced segment PQ by a longer segment
one of whose endpoints lies in a vertex of the polyhedron. Now, performe similar
argument for the endpoint Q of the obtained segment. We can replace PQ by a
longer segment with the endpoints in vertices of the polyhedron.

10.6. Let a = PA, b = PB and c = PC. We can assume that a ≤ b ≤ c. Then
by the hypothesis c < a + b. Further, let h = PM . We have to prove that

√
c2 + h2 <

√
a2 + h2 +

√
b2 + h2,

i.e.,

c

√
1 +

(
h

c

)2

< a

√
1 +

(
h

a

)2

+ b

√
1 +

(
h

b

)2

.

It remains to notice that

c

√
1 +

(
h

c

)2

< (a + b)

√
1 +

(
h

c

)2

≤ a

√
1 +

(
h

a

)2

+ b

√
1 +

(
h

b

)2

.

10.7. Let us consider plane Π that passes through the midpoint of segment PQ
perpendicularly to it. Suppose that all the vertices of the polyhedron are not closer
to point Q than to point P . Then all the vertices of the polyhedron lie on the same
side of plane Π as point P does. Therefore, point Q lies outside the polyhedron
which contradicts the hypothesis.

Figure 75 (Sol. 10.8)

10.8. Let M and N be the intersection points of planes AOB and COD with
edges CD and AB, respectively (Fig. 75). Since triangle AOB lies inside triangle
AMB, it follows that

AO + BO ≤ AM + BM.

Similarly,
CO + DO ≤ CN + DN.
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Therefore, it suffices to prove that the sum of the lengths of segments AM , BM ,
CN and DN does not exceed the sum of the lengths of the edges of tetrahedron
ABCD.

First, let us prove that if X is a point on side A′B′ of triangle A′B′C ′, then
the length of segment C ′X does not exceed a semi-perimeter of triangle A′B′C ′.
Indeed,

C ′X ≤ C ′B′ + B′X and C ′X ≤ C ′A + A′X.

Therefore,
2C ′X ≤ A′B′ + B′C ′ + C ′A′.

Thus,
2AM ≤ AC + CD + DA, 2BM ≤ BC + CD + DB,
2CN ≤ BA + AC + CB, 2DN ≤ BA + AD + DB.

By adding up all these inequalities we get the desired statement.
10.9. Let us enumerate the segments and consider the i-th segment. Let li be

its length, xi, yi, zi the lengths of projections on the cube’s edges. It is easy to
verify that li ≤ xi + yi + zi.

On the other hand, if any plane parallel to the cube’s face intersects not more
than 1 segment, then the projections of these segments to each edge of the cube
do not have common points. Therefore,

∑
xi ≤ 1,

∑
yi ≤ 1,

∑
zi ≤ 1 and, finally,∑

li ≤ 3.
10.10. Consider the projections on 3 nonparallel edges of the cube. The projec-

tion of the given broken line on any edge contains both endpoints of the edge and,
therefore, it coincides with the whole edge. Hence, the sum of the lengths of the
projections of the broken line’s links on any edge is no less than 2 and the sum of
the lengths of projections on all the three edges is not less than 6.

One of the three lengths of projections of any broken line’s link on the cube’s
edges is zero; let two other lengths of projections be equal to a and b. Since
(a + b)2 ≤ 2(a2 + b2), it follows that the sum of the lengths of the links of the
broken line is no less than the sum of the lengths of these projections on the three
edges of the cube divided by

√
2; hence, it is no less than 6√

2
= 3

√
2.

10.11. Let v1,v2,v3 and v4 be vectors that go from the center of the sphere
to the vertices of the tetrahedron. Since the center of the sphere lies inside the
tetrahedron, there exist positive numbers λ1, . . . , λ4 such that

λ1v1 + λ2v2 + λ3v3 + λ4v4 = 0

(see Problem 7.16). We may assume that λ1 + · · ·+λ4 = 1. Let us prove that then
λi ≤ 1

2 . Let, for example, λ1 > 1
2 . Then

R

2
< |λ1v1| = |λ2v2 + λ3v3 + λ4v4| ≤ (λ2 + λ3 + λ4)R = (1− λ1)R <

R

2
.

We have got a contradiction because λi ≤ 1
2 . Therefore,

|v1 + · · ·+ v4| = |(1− 2λ1)v1 + · · ·+ (1− 2λ4)v4|
≤ ((1− 2λ1) + · · ·+ (1− 2λ4))R = 2R.

Since ∑
|vi − vj |2 = (4R)2 − |

∑
vi|2



160 CHAPTER 10. GEOMETRIC INEQUALITIES

(see the solution of Problem 14.15) and |∑vi|2 ≤ 2R, it follows that

∑
|vi − vj |2 ≥ (16− 4)R2 = 12R2.

And since 2R > |vi − vj |, it follows that

2R
∑

|vi − vj | >
∑

|vi − vj |2 ≥ 12R2.

10.12. Let us consider all the sections of the tetrahedron by the planes parallel to
the given sections. Those of them that are quadrilaterals turn under the projection
on the line perpendicular to the planes of the sections into the inner points of
segment PQ, where points P and Q correspond to sections with planes passing
through the vertices of the tetrahedron (Fig. 76 a)).

The length of the side of the section that belongs to a fixed face of the tetrahedron
is a linear function on segment PQ. Therefore, the perimeter of the section being
the sum of linear functions is a linear function on segment PQ. The value of a
linear function at an arbitrary point of PQ is confined between its values at points
P and Q.

Therefore, it suffices to verify that the perimeter of the section of a regular
tetrahedron by a plane that passes through a vertex of the tetrahedron is confined
between 2a and 3a (except for the cases when the section consists of one point; but
such a section cannot correspond to neither P nor Q). If the section is an edge of
the tetrahedron then the value of the considered linear function is equal to 2a for
it.

Figure 76 (Sol. 10.12)

Since the length of any segment with the endpoints on sides of an equilateral tri-
angle does not exceed the length of this triangle’s side, the perimeter of a triangular
section of the tetrahedron does not exceed 3a.

If the plane of the section passes through vertex D of tetrahedron ABCD and
intersects edges AB and AC, then we will unfold faces ABD and ACD to plane
ABC (Fig. 76 b)). The sides of the section connect points D′ and D′′ and, therefore,
the sum of their lengths is no less than D′D′′ = 2a.

10.13. If the vertices of a spatial quadrilateral ABCD are not in one plane,
then

∠ABC < ∠ABD + ∠DBC and ∠ADC < ∠ADB + ∠BDC

(cf. Problem 5.4). Adding up these inequalities and adding further to both sides
angles ∠BAD and ∠BCD we get the desired statement, because the sums of the
angles of triangles ABD and DBC are equal to 180◦.
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10.14. Suppose that vertices A and B of tetrahedron ABCD have the indicated
property. Then

∠CAB + ∠DAB > 180◦ and ∠CBA + ∠DBA > 180◦.

On the other hand,

∠CAB + ∠CBA = 180◦ − ∠ACB < 180◦ and ∠DBA + ∠DAB < 180◦.

Contradiction.
10.15. By Problem 5.4 ∠ASB < ∠ASO + ∠BSO. Since ray SO lies inside the

trihedral angle SABC, it follows that

∠ASO + ∠BSO < ∠ASC + ∠BSC

(cf. Problem 5.6). By writing down two more pairs of such inequalities and taking
their sum we get the desired statement.

10.16. a) Let α, β and γ be the angles between edges SA, SB and SC and the
planes of the faces opposite to them, respectively. Since the angle between line l
and plane Π does not exceed the angle between line l and any line in plane Π, it
follows that

α ≤ ∠ASB, β ≤ ∠BSC and γ ≤ ∠CSA.

b) The dihedral angles of the trihedral angle SABC are all acute and, therefore,
the projection SA1 of ray SA to plane SBC lies inside angle BSC. Therefore, the
inequalities

∠ASB ≤ ∠BSA1 + ∠ASA1 and ∠ASC ≤ ∠ASA1 + ∠CSA1

yield
∠ASB + ∠ASC − ∠BSC ≤ 2∠ASA1.

Write similar inequalities for edges SB and SC and take their sum. We get the
desired statement.

10.17. Let O be the center of the rectangular parallelepiped ABCDA1B1C1D1.
Height OH of an isosceles triangle AOC is parallel to edge AA1 and, therefore,
∠AOC = 2α, where α is the angle between edge AA1 and diagonal AC1. Similar
arguments show that the plane angles of the trihedral angle OACD1 are equal to
2α, 2β and 2γ. Therefore, 2α + 2β + 2γ < 2π.

10.18. Let S be the vertex of the given angle. From solutions of Problem 5.16
b) it follows that it is possible to intersect this angle with a plane so that in the
section we get rhombus ABCD, where SA = SC and SB = SD, and the projection
of vertex S to the plane of the section coincides with the intersection point of the
diagonals of the rhombus, O. Angle ASC is acute if AO < SO and obtuse if
AO > SO. Since ∠ASB = 60◦, it follows that

AB2 = AS2 + BS2 −AS ·BS.

Expressing, thanks to Pythagoras theorem, AB, AS and BS via AO, BO and SO
we get after simplification and squaring

(1 + a2)(1 + b2) = 4, where a = AO
SO and b = BO

SO .
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Therefore, the inequalities a > 1 and b > 1, as well as inequalities a < 1 and b < 1,
cannot hold simultaneously.

10.19. Let O be a point inside tetrahedron ABCD; let α, β and γ be angles
with vertex O that subtend the edges AD, BD and CD; let a, b and c be angles
with vertex O that subtend the edges BC, CA and AB; P the intersection point
of line DO with face ABC. Since ray OP lies inside the trihedral angle OABC, it
follows that

∠AOP + ∠BOP < ∠AOC + ∠BOC

(cf. Problem 5.6), i.e., π − α + π − β < b + a and, therefore,

α + β + a + b > 2π.

Similarly,
β + γ + b + c > 2π and α + γ + a + c > 2π.

Adding up these inequalities we get the desired statement.
10.20. a) Let us apply the statement of Problem 7.19 to tetrahedron ABCD.

Let a, b, c and d be normal vectors to faces BCD, ACD, ABD and ABC, respec-
tively. The sum of these vectors is equal to 0 and, therefore, there exists a spatial
quadrilateral the vectors of whose consecutive sides are a, b, c and d.

The angle between sides a and b of this quadrilateral is equal to the dihedral
angle at edge CD (cf. Fig. 77). Similar arguments show that the considered sum of
the dihedral angles is equal to the sum of plane angles of the obtained quadrilateral
which is smaller than 2π (Problem 10.13).

Figure 77 (Sol. 10.20)

b) Let us express the inequality obtained in heading a) for each pair of the
opposite edges of the tetrahedron and add up these three inequalities. Each dihedral
angle of the tetrahedron enters two such inequalities and, therefore, the doubled
sum of the dihedral angles of the tetrahedron is smaller than 6π.

The sum of the dihedral angles of any trihedral angle is greater than π (Problem
5.5). Let us write such an inequality for each of the four vertices of the tetrahedron
and add up these inequalities. Each dihedral angle of the tetrahedron enters two
such inequalities (corresponding to the endpoints of an edge) and, therefore, the
doubled sum of the dihedral angles of the tetrahedron is greater than 4π.

10.21. The vertices of all the coni can be confined in a ball of radius r. Consider
a sphere of radius R with the same center O. As R

r tends to infinity, the share of
the surface of this sphere confined inside the given coni tends to the share of its
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surface confined inside the coni with the same angles, vertices at point O, and the
axes parallel to the axes of the given coni.

Since the solid angle of the cone with angle ϕ is equal to 4π sin2
(

ϕ
4

)
(Problem

4.50), it follows that

4π
(
sin2

(ϕ1

4

)
+ · · ·+ sin2

(ϕn

4

))
≥ 4π.

It remains to observe that x ≥ sin x.
10.22. For any tetrahedron the projections of its three faces on the plane of

the remaining face completely cover that face. It is also clear that the area of the
projection of a triangle on a plane not parallel to it is smaller than the area of the
triangle itself (see Problem 2.13).

10.23. On faces of the inner polyhedron construct outwards, as on bases, rect-
angular prisms whose edges are sufficiently long: all of them should intersect the
surface of the outer polyhedron. These prisms cut on the surface of the outer poly-
hedron pairwise nonintersecting figures, the area of each one of these being no less
than that of the base of the prism, i.e. the area of a face of the inner polyhedron.

Indeed, the projection of each such figure on the plane of the base of the prism
coincides with the base itself and the projection can only diminish the area of a
figure.

10.24. Let plane Π be parallel to two skew edges of the tetrahedron. Let us
prove that the desired two planes can be found even among the planes perpendicular
to Π.

The projection of the tetrahedron on any such plane is a trapezoid (or a triangle)
whose heights are equal to the distance between the chosen skew edges of the tetra-
hedron. The midline of this trapezoid (triangle) is the projection of a parallelogram
with vertices at the midpoints of the four edges of the tetrahedron.

Therefore, it remains to verify that for any parallelogram there exist two lines
(in the same plane) such that the ratio of the lengths of the projections of the
parallelogram to them is not less than

√
2. Let a and b be the sides of parallelogram’s

sides (a ≤ b) and d the length of its greatest diagonal. The length of the projection
of the parallelogram to the line perpendicular to side b does not exceed a; the length
of the projection to a line parallel to the diagonal d is equal to d. It is also clear
that d2 ≥ a2 + b2 ≥ 2a2.

10.25. a) If the triangular section does not pass through a vertex of the tetra-
hedron, then there exists a parallel to it triangular section that does pass through
a vertex; the area of the latter section is greater.

Therefore, it suffices to consider cases when the section passes through a vertex
or an edge of the tetrahedron.

Let point M lie on edge CD of tetrahedron ABCD. The length of the height
dropped from point M to line AB is confined between the lengths of heights dropped
to this line from points C and D (Problem 10.4). Therefore, either SABM ≤ SABC

or SABM ≤ SABD.
Let points M and N lie on edges CD and CB respectively of tetrahedron ABCD.

To section AMN of tetrahedron AMBC we can apply the statement just proved.
Therefore, either SAMN ≤ SACM ≤ SACD or SAMN ≤ SABM .

b) Let the plane intersect edges AB, CD, BD and AC of tetrahedron ABCD
at points K, L, M and N , respectively. Let us consider the projection to the plane
perpendicular to line MN (Fig. 78 a)). Since K ′L′ = KL sin ϕ, where ϕ is the angle
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Figure 78 (Sol. 10.25)

between lines KL and MN , we see that the area of the section of the tetrahedron
is equal to K ′L′ · MN

2 . Therefore, it suffices to prove that either K ′L′ ≤ A′C ′ or
K ′L′ ≤ B′D′.

It remains to prove the following planimetric statement:
The length of segment KL that passes through the intersection point of diagonals

of convex quadrilateral ABCD does not exceed the length of one of its diagonals
(the endpoints of the segment lie on sides of the quadrilateral).

Let us draw lines through the endpoints of segment KL perpendicular to it and
consider the projections on KL of vertices of the quadrilateral and the intersection
points of lines AC and BD with the perpendiculars to KL we erected (Fig. 78 b)).

Let, for definiteness, point A lie inside the strip given by these lines and point B
be outside it. Then we may assume that D lies inside the strip because otherwise
BD > KL and the proof is completed. Since

AA′

BB′ ≤
AK

BK
=

C1L

D1L
≤ CC ′

DD′ ,

it follows that either AA′ ≤ CC ′ (and, therefore, AC > KL) or BB′ ≥ DD′ (and,
therefore, BD > KL).

10.26. Let the given plane intersect edges AB, AD and AA′ at points K, L
and M , respectively; let P , Q and R be the centers of faces ABB′A′, ABCD and
ADD′A′, respectively; let O be the tangent point of the plane with the sphere.

Planes KOM and KPM are tangent to the sphere at points O and P and,
therefore, ∠KOM = ∠KPM . Hence, ∠KOM = ∠KPM . Similar arguments
show that

∠KPM + ∠MRL + ∠LQK = ∠KOM + ∠MOL + ∠LOK = 360◦.

It is also clear that KP = KQ, LQ = LR and MR = MP ; hence, quadrilaterals
AKPM , AMRL and ALQK can be added as indicated on Fig. 79.

In hexagon ALA1MA2K the angles at vertices A, A1 and A2 are right ones and,
therefore,

∠K + ∠L + ∠M = 4π = 1.5π = 2.5π
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Figure 79 (Sol. 10.26)

and since angles K, L and M are greater than π
2 , it follows that two of them, say, K

and L, are smaller than π. These argument show that point A2 lies on arc ^ DC,
A1 on arc ^ CB and, therefore, point M lies inside square ABCD.

The symmetry through the midperpendicular to segment DA2 sends both circles
into themselves and, therefore, the tangent lines DA and DC turn into A2A

′′
2 and

A2A
′
2. Hence, 4DKE = 4A2E1E. Similarly, 4BLF = 4A1F1F . Therefore, the

area of hexagon ALA1MA2K, being equal to the surface area of the given pyramid,
is smaller than the area of square ABCD.

10.27. If two tetrahedrons have a common trihedral angle, then the ratio of
their volumes is equal to the product of the ratios of the lengths of edges that lie
on the edges of this trihedral angle (cf. Problem 3.1).

Therefore, the product of the ratios of volumes of the considered four tetrahe-
drons to the volume of the initial one is equal to the product of numbers of the
form AiBij : AiAj , where Ai and Aj are vertices of the tetrahedron, Bij is a point
fixed on edge AiAj . To every edge AiAj there corresponds a pair of such numbers,
AiBij : AiAj and AiBij : AiAj . If AiAj = a and AiBij = x, then AjBij = a− x.
Therefore, the product of the pair of numbers corresponding to edge AiAj is equal
to x(a−x)

a2 ≤ 1
4 .

Since a tetrahedron has 6 edges, the considered product of the four ratios of
volumes of tetrahedrons does not exceed 1

46 = 1
84 . Therefore, one of the ratios of

volumes does not exceed 1
8 .

10.28. Let the lengths of all edges of tetrahedron ABCD, except for edge CD,
do not exceed 1. If h1 and h2 are heights dropped from vertices C and D to line AB
and a = AB, then the volume V of tetrahedron ABCD is equal to ah1h2 sin 1

6ϕ,
where ϕ is the dihedral angle at edge AB. In triangle with sides a, b and c, the
squared length of the height dropped to a is equal to

b2 − x2 + c2 − (a− x)2

2
≤ b2 + c2 − 1

2a2

2
.

In our case h2 ≤ 1 − a2

4 , hence, V ≤ a(1−a2/4)
6 , where 0 < a ≤ 1. By calculating

the derivative of the function a(1 − a2

4 ) we see that it grows monotonously from
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0 to
√

4
3 and, therefore, so it does on the segment [0, 1]. At a = 1 the value of

1
6a(1− a2/4) is equal to 1

8 .
10.29. a) Let O be the center of the given sphere. Let us divide the given

polyhedron into pyramids with vertex O whose bases are the faces of the polyhedron.
The heights of these pyramids are no less than r and, therefore, (1) the sum of their
volumes is not less than Sr

3 , (2) V ≥ Sr
3 .

b) On the faces of the given polyhedron as on bases, construct inward rectangular
prisms of height h = V

S . These prisms can intersect and go out of the polyhedron
and the sum of their volumes is equal to hS = V ; therefore, there remains a point
of the polyhedron not covered by them. The sphere of radius V

S centered at this
point does not intersect the faces of the given polyhedron.

c) According to heading b) in an inner point of the polyhedron one can place a
sphere of radius r = V2

S2
that does not intersect the faces of the given polyhedron.

Since this sphere lies inside the outer polyhedron, then by heading a)

V1

S1
≥ r

3
.

10.30. On each edge of the cube there is a point of the polyhedron because
otherwise its projection along this edge would not have coincided with the face. On
each edge of the cube take a point of the polyhedron and consider the new convex
polyhedron with vertices at these points. Since the new polyhedron is contained in
the initial polyhedron, it suffices to prove that its volume is not less than 1

3 of the
volume of the cube.

We may assume that the length of the cube’s edge is equal to 1. The considered
polyhedron is obtained by cutting off tetrahedrons from the trihedral angles at the
vertices of the cube. Let us prove that the sum of volumes of two tetrahedrons for
vertices that belong to the same edge of the cube does not exceed 1

6 . This sum is
equal to 1

3S1h1 + 1
3S2h2, where h1 and h2 are the heights dropped to the opposite

faces of the cube from a vertex of the polyhedron that lies on the given edge of the
cube and S1 and S2 are the areas of the corresponding faces of the tetrahedrons.
It remains to observe that

S1 ≤ 1
2
, S2 ≤ 1

2
and h1 + h2 = 1.

Four parallel edges of the cube determine a partition of its vertices into 4 pairs.
Therefore, the volume of all the cut off tetrahedrons does not exceed 4

6 = 2
3 , i.e.,

the volume of the remaining part is not less than 1
3 .

If ABCDA1B1C1D1 is the given cube, then the polyhedrons for which the equal-
ity is attained are tetrahedrons AB1CD1 and A1BC1D.

10.31. Let us draw planes parallel to coordinate planes and distant from them
by nε, where n runs over integers and ε is a fixed number. These planes divide the
space into cubes with edge ε.

It suffices to carry out the proof for the bodies that consist of these cubes. Indeed,
if we tend ε to zero then the volume and the areas of the projections of the body
that consists of the cubes lying inside the initial body will tend to the volume and
the area of the projections of the initial body.

First, let us prove that if the body is cut in two by a plane parallel to the
coordinate plane and for both parts the indicated inequality holds, then it holds for
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the whole body. Let V be the volume of the whole body, S1, S2 and S3 the areas of
its projections on coordinate planes; the volume and the area of its first and second
parts will be denoted by the same letters with one and two primes respectively.

We have to prove that the inequalities V ′ ≤ √
S′1S

′
2S
′
3 and V ′′ ≤ √

S′′1 S′′2 S′′3
imply V = V ′ + V ′′ ≤ √

S1S2S3. Since S′3 ≤ S3 and S′′3 ≤ S3, it suffices to verify
that √

S′1S
′
2 +

√
S′′1 S′′2 ≤

√
S1S2.

We may assume that S3 is the area of the projection to the plane that cuts the
body. Then S1 = S′1 + S′′1 and S2 = S′2 + S′′2 . It remains to verify that

√
ab +

√
cd ≤

√
a + c)(b + d).

To prove this we have to square both parts and make use of the inequality

√
(ad)(bc) ≤ 1

2
(ad + bc).

The proof of the required inequality will be carried out by induction on the
height of the body, i.e., on the number of layers of the cubes from which the body
is composed. By the previous argument we have actually proved the inductive step.
The base of induction, however, is not yet proved, i.e., we have not considered the
case of the body that consists of one layer of cubes.

In this case we will carry out the proof again by induction with the help of the
above proved statement: let us cut the body into rectangular parallelepipeds of size
ε× ε× nε.

The validity of the required inequality for one such parallelepiped, i.e., the base
of induction, is easy to verify.

10.32. Let us consider the section of tetrahedron by the plane parallel to face
ABC and passing through the center of its inscribed sphere. This section is triangle
A1B1C1 similar to triangle ABC and the similarity coefficient is smaller than 1.
Triangle A1B1C1 contains a circle of radius r, where r is the radius of the inscribed
sphere of tetrahedron. Draw tangents parallel to sides of triangle A1B1C1 to this
circle; we get a still smaller triangle circumscribed about the circle of radius r.

10.33. Let p = SMBC : SABC , q = SMAC : SABC and r = SMAB : SABC . By
Problem 7.12

{OM} = p{OA}+ q{OB}+ r{OC}
It remains to notice that

OM ≤ pOA + qOB + rOC.

10.34. Let 2a be the side of the base of the pyramid, h its height. Then r is
the radius of the circle inscribed in an isosceles triangle with height h and base 2a;
let R be the radius of the circumscribed circle of an isosceles triangle with height
h and base 2

√
2a. Therefore, r(a +

√
a2 + h2) = ah, i.e., rh = a(

√
a2 + h2 − a).

If b is a lateral side of an isosceles triangle, then 2R : b = b : h, i.e., 2Rh = b2 =
2a2 + h2. Therefore,

k =
R

r
=

2a2 + h2

2a(
√

a2 + h2 − a)
,
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i.e.,
(2a2k + 2a2 + h2)2 = 4a2k2(a2 + h2).

Let x = h2

a2 , then
x2 + 4x(1 + k − k2) + 4 + 8k = 0.

The discriminant of this quadratic equation in x is equal to 16k2(k2−2k−1). Since
k > 0 and, therefore, this quadratic has real roots, it follows that k ≥ 1 +

√
2.

10.35. This is possible. The projection of the cube with edge a to the plane
perpendicular to the diagonal is a regular hexagon with side b = a

√
2√
3

.
Let us inscribe in the obtained hexagon a square as plotted on Fig. 80. It is easy

to verify that the side of this square is equal to 2
√

3b
1+
√

3
= 2

√
2a

1+
√

3
> a and, therefore, it

can contain inside itself a square K with side a. Cuttting a part of the cube whose
projection is K we get the desired hole.

Figure 80 (Sol. 10.35)

10.36. a) Yes, this is true. Let O be the center of symmetry of the given
polyhedron; M ′

2 the polygon symmetric to M2 through point O. Let us consider
the smallest (in area) convex polyhedron P that contains both M2 and M ′

2. Let us
prove that the part of the area of section M1 that lies inside P is not less than the
area of M2.

Let A be an inner point of a face N of polyhedron P distinct from M2 and M ′
2

and let B be a point symmetric to A through O. A plane parallel to N intersects
faces M2 and M ′

2 only if it intersects segment AB; then it intersects M1 as well.
Let the plane that passes through a point of segment AB parallel to face N

intersect faces M2 and M ′
2 along segments of length l and l′, respectively; let it

intersect the part of face M1 that lies inside P along a segment of length m. Then
m ≥ l

2+l′ because polyhedron P is a convex one. Therefore, the area of M1 is
smaller than a half sum of the areas of M2 and M ′

2, i.e., the area of M2.
b) No, this is false. Let us consider a regular octahedron with edge a. The radius

of the circumscribed circle of a face is equal to a√
3
. A section parallel to a face and

passing through the center of the octahedron is a regular hexagon with side a
2 ; the

radius of its circumscribed circle is equal to a
2 . Clearly, a√

3
> a

2 .
10.37. Let us consider the body that consists of points whose distance from the

given polyhedron is ≤ d. The surface area of this body is equal to

S + d
∑

li(π − ϕi) + 4πd2,
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where S is the surface area of the polyhedron (Problem 3.13). Since this body is
confined inside a sphere of radius d + R, the surface area of the body does not
exceed 4π(d + R)2 (this statement is obtained by passage to the limit from the
statement of Problem 10.23). Therefore,

S + d
∑

li(π − ϕi) ≤ 8πdR + 4πR2.

By tending d to infinity we get the desired statement.
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CHAPTER 11. PROBLEMS ON MAXIMUM AND MINIMUM

§1. A segment with the endpoints on skew lines

11.1. The endpoints of segment AB move along given lines a and b. Prove that
the length of AB is the smallest possible when AB is perpendicular to both lines.

11.2. Find the least area of the section of a cube with edge a by a plane that
passes through its diagonal.

11.3. All the edges of a regular triangular prism ABCA1B1C1 are of length a.
Points M and N lie on lines BC1 and CA1, so that line MN is parallel to plane
AA1B. When such a segment MN is the shortest?

11.4. Given cube ABCDA1B1C1D1 with edge a. The endpoints of a segment
that intersects edge C1D1 lie on lines AA1 and BC. What is the least length that
this segment can have?

11.5. Given cube ABCDA1B1C1D1 with edge a. The endpoints of a segment
that constitutes a 60◦ angle with the plane of face ABCD lie on lines AB1 and
BC1. What is the least length such a segment can have?

§2. Area and volume

11.6. What is the least value of the ratio of volumes of a cone and cylinder
circumscribed about the same sphere?

11.7. The surface area of a spherical segment is equal to S (we have in mind
only the spherical part of the surface). What is the largest possible volume of such
a segment?

11.8. Prove that among all the regular n-gonal pyramids with fixed total area
the pyramid whose dihedral angle at an edge of the base is equal to the dihedral
angle at an edge of a regular tetrahedron has the largest volume.

11.9. Through point M inside a given trihedral angle with right planar angles
all possible planes are drawn. Prove that the volume of a tetrahedron cut off such
a plane from the trihedral angle is the least one when M is the intersection point
of the medians of the triangle obtained in the section of the trihedral angle with
this plane.

* * *

11.10. What is the greatest area of the projection of a regular tetrahedron with
edge a to a plane?

11.11. What is the greatest area of the projection of a rectangular parallelepiped
with edges a, b and c to a plane?

11.12. A cube with edge a lies on a plane. A source of light is situated at
distance b from the plane, and b > a. Find the least value of the area of the shade
the cube casts on the plane.
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§3. Distances

11.13. a) For every inner point of a regular tetrahedron consider the sum of
distances from the point to the vertices. Prove that the sum takes the least value
for the center of the tetrahedron.

b) The lengths of two opposite edges of tetrahedron are equal to b and c that of
the other edges are equal to a. What is the least value of the sum of distances from
an arbitrary point in space to the vertices of this tetrahedron?

11.14. Given cube ABCDA1B1C1D1 with edge a. On rays A1A, A1B1 and
A1D1, points E, F and G, respectively, are taken such that A1E = A1F = A1G = b.
Let M be a point on circle S1 inscribed in square ABCD and N be a point on circle
S2 that passes through E, F and G. What is the least value of the length of segment
MN?

11.15. In a truncated cone the angle between the axis and the generator is equal
to 30◦. Prove that the shortest way along the surface of the cone that connects a
point on the boundary of one of the bases with the diametrically opposite point on
the boundary of the other base is of length 2R, where R is the radius of the greater
base.

11.16. The lengths of three pairwise perpendicular segments OA, OB and OC
are equal to a, b and c, respectively, where a ≤ b ≤ c. What is the least and greatest
values that the sum of distances from points A, B and C to a line l that passes
through O can take?

§4. Miscellaneous problems

11.17. Line l lies in the plane of one face of a given dihedral angle. Prove
that the angle between l and the plane of the other face is the greatest when l is
perpendicular to the edge of the given dihedral angle.

11.18. The height of a regular quadrangular prism ABCDA1B1C1D1 is two
times shorter than the side of the base. Find the greatest value of angle A1MC1,
where M is a point on edge AB.

11.19. Three identical cylindrical surfaces of radius R with mutually perpen-
dicular axes are pairwise tangent to each other.

a) What is the radius of the smallest ball tangent to all these cylinders?
b) What is the radius of the largest cylinder tangent to the three given ones and

whose axis passes inside the triangle with vertices at the tangent points of the given
cylinders?

11.20. Can a regular tetrahedron with edge 1 fall through a circular hole of
radius: a) 0.45; b) 0.44? (We ignore the thickness of the plane that hosts the hole).

Problems for independent study

11.21. What greatest volume can a quadrangular pyramid have if its base is a
rectangular one side of which is equal to a and the lateral edges of the pyramid are
equal to b?

11.22. What is the largest volume of tetrahedron ABCD all vertices of which
lie on a sphere of radius 1 and the center of the sphere is the vertex of angles of
60◦ that subtend edges AB, BC, CD and DA?

11.23. Two cones have a common base and are situated on different sides of it.
The radius of the base is equal to r, the height of one of the cones is equal to h, that
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of another one is H (h ≤ H). Find the greatest distance between two generators of
these cones.

11.24. Point N lies on a diagonal of a lateral face of a cube with edge a, point
M lies on the circle situated in the plane of the lower face of the cube and with the
center at the center of this face. Find the least value of the length of segment MN .

11.25. Given a regular tetrahedron with edge a, find the radius of the ball
centered in the center of the tetrahedron, for which the sum of the volumes of the
part of the tetrahedron situated outside the ball and the part of the ball situated
outside the tetrahedron takes the least value.

11.26. The diagonal of a unit cube lies on the edge of a dihedral angle of value
α (α < 180◦). In what limits can the volume of the part of the cube confined inside
the angle vary?

11.27. Two vertices of a tetrahedron lie on the surface of a sphere of radius
√

10
and two other vertices on the surface of the sphere of radius 2 concentric with the
first one. What greatest volume can such a tetrahedron have?

11.28. The plane angles of one trihedral angle are equal to 60◦, those of another
one are equal to 90◦ and the distance between their vertices is equal to a; the vertex
of each of them is equidistant from the faces of another one. Find the least value
of their common part — the 6-hedron.

Solutions

11.1. Let us draw through line b a plane Π parallel to a. Let A′ be the projection
of point A to plane Π. Then

AB2 = A′B2 + A′A2 = A′B2 + h2,

where h is the distance between line a and plane Π. Point A′ coincides with B if
AB ⊥ Π.

11.2. Let the plane pass through diagonal AC1 of cube ABCDA1B1C1D1 and
intersect its edges BB1 and DD1 at points P and Q, respectively. The area of
the parallelogram APC1Q is equal to the product of the length of segment AC1

by the distance from point P to line AC1. The distance from point P to line AC1

is minimal when P lies on the common perpendicular to lines AC1 and BB1; the
line that passes through the midpoints of edges BB1 and DD1 is this common
perpendicular. Thus, the area of the section is the least one when P and Q are
the midpoints of edges BB1 and DD1. This section is a rhombus with diagonals
AC1 = a

√
3 and PQ = a

√
2 and its area is equal to a2√6

2 .
11.3. If M ′ and N ′ are the projections of points M and N to plane ABC, then

M ′N ′ ‖ AB. Let CM ′ = x. Therefore, M ′N ′ = x and the length of the projection
of segment MN to line CC1 is equal to |a− 2x|. Hence,

MN2 = x2 + (a− 2x)2 = 5x2 − 4ax + a2.

The least value of the length of segment MN is equal to a√
5
.

11.4. Let points M and N lie on lines AA1 and BC, respectively, and segment
MN intersect edge C1D1 at point L. Then points M and N lie on rays AA1 and
BC so that x = AM > a and y = BN > a. By considering the projections on
planes AA1B and ABC we get

C1L : LD1 = a : (x− a) and C1L : LD1 = (y − a) : a.
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respectively. Therefore, (x − a)(y − a) = a2, i.e., xy = (x + y)a; hence, (xy)2 =
(x + y)2a2 ≥ 4xya2, i.e., xy ≥ 4a2. Therefore,

MN2 = x2 + y2 + a2 = (x + y)2 − 2xy + a2 =

(xy)2

a2
− 2xy + a2 =

(xy − a2)2

a2
≥ 9a2.

The least value of the length of segment MN is equal to 3a; it is attained when
AM = BN = 2a.

11.5. Let us introduce a coordinate system directing axes Ox, Oy and Oz along
rays BC, BA and BB1, respectively. Let the coordinates of point M from line BC1

be (x, 0, x) and those of point N from line B1A be (0, y, a− y). Then the squared
length of segment MN is equal to x2 + y2(a − x − y)2 and the squared length of
its projection M1N1 to plane of face ABCD is equal to x2 + y2. Since the angle
between lines MN and M1N1 is equal to 60◦, it follows that MN = 2M1N1, i.e.,
(a− x− y)2 = 3(x2 + y2).

Let u2 = x2 + y2 and v = x + y. Then MN = 2M1N1 = 2u. Moreover,
(a− v)2 = 3u2 by the hypothesis and 2u2 ≥ v2. Therefore, (a− v)2 ≥ 3v2

2 ; hence,
v ≤ a(

√
6− 2). Therefore,

u2 =
(a− v)2

3
≥ a2(3−√6)2

3
= a2(

√
3−

√
2)2,

i.e., MN ≥ 2a(
√

3−√2). The equality is attained when x = y = a(
√

6−2)
2 .

11.6. Let r be the radius of the given sphere. If the axial section of the cone is
an isosceles triangle with height h and base 2a, then ah = S = r(a +

√
h2 + a2).

Therefore,
a2(h− r)2 = r2(h2 + a2), i.e., a2 = r2h2

h−2r .

Hence, the volume of the cone is equal to πr2h2

3(h−2r) . Since

d

dh

(
h2

h− 2r

)
= − 4rh− h2

(h− 2r)2
,

it follows that the volume of the cone is minimal at h = 4r. In this case the ratio
of volumes of the cone to the cylinder is equal to 4

3 .
11.7. Let V be the volume of the spherical segment, R the radius of the sphere.

Since S = 2πRh (by Problem 4.24) and V = πh2(3R−h)
3 (by Problem 4.27), it follows

that

V =
Sh

2
− πh3

3
.

Therefore, the derivative of V with respect to h is equal to S
2 − πh2. The greatest

volume is attained at h =
√

S
2π ; it is equal to S

√
S

18π .
11.8. Let h be the height of a regular pyramid, r the radius of the inscribed

circle of its base. Then the volume and the total area of the pyramid’s surface are
equal to

n

3
tan

π

n
(r2h) and n tan π

n (r2 + r
√

h2 + r2),
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respectively. Thus, the quantity

r2 + r
√

h2 + r2 = a

is fixed and we have to find out when the quantity r2h attains the maximal value
(it is already clear that the answer does not depend on n).

Since
h2 + r2 = (

a

r
− r)2 = (

a

r
)2 − 2a + r2,

it follows that
(r2h)2 = a2r2 − 2ar4.

The derivative of this function with respect to r is equal to 2a2r−8ar3. Therefore,
the volume of the pyramid is maximal if r2 = a

4 , i.e., h2 = 2a. Therefore, if ϕ is
the dihedral angle at an edge of the base of this pyramid, then tan2 ϕ = 8, i.e.,
cos ϕ = 1

3 .
11.9. Let us introduce a coordinate system directing its axes along the edges

of the given trihedral angle. Let the coordinates of point M be (α, β, γ). Let the
plane intersect the edges of the trihedral angle at points distant from its vertex by
a, b and c. Then the equation of this plane is

x

a
+

y

b
+

z

c
= 1.

Since the plane passes through point M , we have

α

a
+

β

b
+

γ

c
= 1.

The volume of the cutoff tetrahedron is equal to abc
6 . The product abc takes the

least value when the value of αβγ
abc is the greatest, i.e., when α

a = β
b = γ

c = 1
3 .

11.10. The projection of a tetrahedron can be a triangle or a quadrilateral. In
the first case it is the projection on one of the faces and, therefore, its area does
not exceed

√
3a2

4 .
In the second case the diagonals of the quadrilateral are projections of the tetra-

hedron’s edges and, therefore, the area of the shade, being equal to one half the
product of the diagonal’s lengths by the sine of the angle between them, does not
exceed a2

2 .
The equality is attained when the pair of opposite edges of the terahedron is

parallel to the given plane. It remains to notice that
√

3a2

4 < a2

2 .
11.11. The area of the projection of the parallelepiped is twice the area of

the projection of one of the triangles with vertices at the endpoints of the three
edges of the parallelepiped that exit one point; for example, if the projection of the
parallelepiped is a hexagon then for such a vertex we should take a vertex whose
projection lies inside the hexagon.

For a rectangular parallelepiped all such triangles are equal. Therefore, the
area of the projection of the parallelepiped is the greatest when one of these tri-
angles is parallel to the plane of the projection. The greatest value is equal to√

a2b2 + b2c2 + c2a2 (cf. Problem 1.22).
11.12. Let ABCD be a square with side a; let the distance from point X to

line AB be equal to b, where b > a; let C ′ and D′ be intersection points of the
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extensions of segments XC and XD beyond points C and D respectively with line
AB. Since 4C ′D′X ∼ 4CDX, it follows that x : b = a : (b− a), where x = C ′D′.
Therefore, x = ab

b−a . These arguments show that the area casted by the upper face
of the cube is always a square of side ab

b−a .
Therefore, the area of the shade casted by the cube is the least when this shade

coincides with the shade casted by the upper face only, i.e., when the source of light

is placed above the upper face. But then the area of the shade is equal to
(

ab
a−b

)2

and the lower face of the cube is considered to be in the shade.
11.13. a) Through vertices of regular tetrahedron ABCD let us draw planes

parallel to its opposite faces. These planes also form a regular tetrahedron. There-
fore, the sum of distances from those planes to an inner point X of tetrahedron
ABCD is constant (Problem 8.1 a)). The distance from point X to such a plane
does not exceed the distance from point X to the corresponding vertex of the tetra-
hedron and the sum of distances from point X to the vertices of the tetrahedron is
equal to the sum of distances from point X to these planes only if X is the center
of tetrahedron.

b) In tetrahedron ABCD, let the lengths of edges AB and CD be equal to b
and c respectively and the length of the other edges be equal to a. If M and N
be the midpoints of edges AB and CD respectively, then line MN is an axis of
symmetry for tetrahedron ABCD. Let X be an arbitrary point in space; point Y
be symmetric to it through line MN ; let K the midpoint of segment XY (it lies
on line MN). Then

XA + XB = XA + Y A ≥ 2KA = KA + KB.

Similarly,
XC + XD ≥ KC + KD.

Therefore, it suffices to find out what is the least value of the sum of distances from
the vertices of the tetrahedron to a point on line MN .

For the points of this line the sum of distances to the vertices of the tetrahedron
ABCD does not vary if we rotate segment AB about this line so that it becomes
parallel to CD. We then get an isosceles trapezoid ABCD with bases b and c and

height MN =
√

a2−(b2+c2)
4 .

For any convex quadrilateral the sum of distances from the vertices takes the
least value at the intersection point of the diagonals; then it is equal to the sum of
the diagonal’s lengths. It is easy to verify that the sum of the diagonal’s lengths of
the obtained trapezoid ABCD is equal to

√
4a2 + 2bc.

11.14. Let O be the center of the cube. Consider two spheres with center O that
contain circles S1 and S2, respectively. Let R1 and R2 be radii of these spheres.

The distance between points of circles S1 and S2 cannot be less than |R1 −R2|.
If two cones with a common vertex O passing through S1 and S2, respectively,
intersect (i.e., have a common generator), then the distance between S1 and S2 is
equal to |R1−R2|. If these cones do not intersect, then the distance between S1 and
S2 is equal to the least of the distances between their points that lie in the plane
that passes through point O and the centers of the circles, i.e., in plane AA1CC1.
Let KL be the diameter of circle S1 that lies in this plane; P the intersection point
of lines OK and AA1 (Fig. 81).
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Figure 81 (Sol. 11.14)

Let us introduce a coordinate system directing axes Ox and Oy along rays A1C1

and A1A. Points E, O and K have coordinates (0, b), ( a√
2
, a

2 ) and (a(
√

2−1)
2 , a),

respectively; therefore,

R2 = OE =

√
b2 − ab +

3a2

4
; EK =

√
4b2 − 8ab +

(7− 2
√

2)a2

2
.

It is also clear that R1 = a√
2
.

The cones intersect if b = A1E ≥ A1P = a(
√

2+1)
2 . In this case the least value

of the length of MN is equal to R2 − R1. If b < a(
√

2+1)
2 , then the cones do not

intersect and the least value of the length of MN is equal to the length of EK.
11.15. Let us prove that the shortest way from point A on the boundry of the

greatest base to the diametrically opposite point C of the other base is the union
of the generator AB and diameter BC; the length of this pass is equal to 2R. Let
r be the radius of the smaller base, O its center. Let us consider a pass from point
A to a point M of the smaller base.

Since the unfolding of the lateral surface of the cone with angle α between the
axis and a generator is a sector of a circle of radius R with the length of the arc
2πR sin α then the unfolding of the lateral surface of this truncated cone with angle
α = 30◦ is a half ring (annulus) with the outer radius 2R and the inner radius 2r.

Figure 82 (Sol. 11.15)
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Moreover, if ∠BOM = 2ϕ, then, on the unfolding, ∠BCM = ϕ (cf. Fig. 82).
The length of any pass from A to M is not shorter than the length of segment AM
on the unfolding of the cone. Therefore, the length of a pass from A to C is not
shorter than AM + CM , where

AM2 = AC2 + CM2 − 2AM · CM cosACM = 4R2 + 4r2 − 8Rr cosϕ

(on the unfolding) and
CM = 2r cosϕ

(on the surface of the cone). It remains to verify that

√
4R2 + 4r2 − 8rR cos ϕ + 2r cosϕ ≥ 2R.

Since 2R − 2r cos ϕ > 0, it follows that by transporting 2r cosϕ to the right-hand
side and squaring the new inequality we easily get the desired statement.

11.16. Let the angles between line l and lines OA, OB and OC be equal to α,
β and γ. Then

cos2 α + cos2 β + cos2 γ = 1

(Problem 1.21), and, therefore,

sin2 α + sin2 β + sin2 γ = 2.

The sum of distances from points A, B and C to line l is equal to

a sin α + b sin β + c sin γ.

Let x = sinα, y = sin β, z = sin γ. In the problem we have to find the least and
the greatest values of the quantity

ax + by + cz

provided
x2 + y2 + z2 = 2, 0 ≤ x, y, z ≤ 1.

These conditions single out a curvilinear triangle (Fig. 83) on the surface of the
sphere

x2 + y2 + z2 = 2.

Let the plane
ax + by + cz = p0

be tangent to the surface of the sphere x2+y2+z2 = 2 at point M0 with coordinates
(x0, y0, z0), where x0, y0, z0 ≥ 0. Then

x0 = λa, y0 = λb, z0 = λc, λ2(a2 + b2 + c2) = 2,

p0 = λ(a2 + b2 + c2) =
√

2(a2 + b2 + c2).
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Figure 83 (Sol. 11.16)

If z0 ≤ 1 (i.e., c2 ≤ a2 + b2), then M0 belongs to the singled out curvilinear triangle
and, therefore, in this case p0 is the desired greatest value of the function ax+by+cz.

Now, let z0 > 1, i.e., c2 > a2 + b2. The plane ax + by + cz = p, where p < p0

intersects the sphere under consideration along a circle. We are only interested in
the values of p for which this circle intersects with the distinguished curvilinear
triangle. The greatest of such p’s corresponds to the value z′0 = 1. The problem to
find x′0 and y′0 is, therefore, reduced to the problem: for what x and y the quantity
ax + by takes the greatest value provided x2 + y2 = 1.

It is easy to verify that x′0 = a√
a2+b2

and y′0 = b√
a2+b2

, i.e., the greatest value of

p is equal in this case to
√

a2 + b2 + c.
Now, let us prove that the least value of ax + by + cz is attained on the distin-

guished triangle at vertex x1 = y1 = 1, z1 = 0. Indeed, since 0 ≤ x, y, z ≤ 1, then
x + y + z ≥ x2 + y2 + z2 = 2 and, therefore, y + z − 1 ≥ 1− x. Both parts of this
inequality are nonnegative and, therefore,

b(y + z − 1) ≥ a(1− x).

Hence,
ax + by + cz ≥ ax + by + bz ≥ a + b.

11.17. Let A be the intersection point of line l with the edge of the dihedral
angle. On line l, draw a segment AB of length 1. Let B′ be the projection of point
B to the plane of another face and O be the projection of the point B to the edge
of the dihedral angle. Then

sin ∠BAB′ = BB′ = OB sin ∠BOB′ = sin ∠BAO sin ∠BOB′.

Since sin BOB′ is the sine of the given dihedral angle, sin∠BAB′ takes its maximal
value when ∠BAO = 90◦.

11.18. Let AA1 = 1, AM = x. Introduce a coordinate system whose axes are
parallel to the prism’s edges. The coordinates of vectors {MA1} and {MC1} are
(0, 1,−x) and (2, 1, 2− x); their inner product is equal to

1− 2x + x2 = (1− x)2 ≥ 0.

Therefore, ∠A1MC1 ≤ 90◦ and this angle is equal to 90◦ when x = 1.
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11.19. There exists a parallelepiped ABCDA1B1C1D1 whose edges AA1, BB1

and CC1 lie on the axes of the given cylinders (Problem 1.19); clearly, this paral-
lelepiped is a cube with edge 2R.

a) The distance from the center of this cube to either of the edges is equal to√
2R whereas the distance from any other point to at least one of the lines AA1,

DC and B1C1 is greater than
√

2R (Problem 1.31). Therefore, the radius of the
smallest ball tangent to all the three cylinders is equal to (

√
2− 1)R.

b) Let K, L and M be the midpoints of edges AD, A1B1 and CC1, i.e., the
points where pairs of given cylinders are tangent. Then the triangle KLM is an
equilateral one and its center O coincides with the center of the cube (Problem 1.3).
Let K ′, L′ and M ′ be the midpoints of edges B1C1, DC and AA1; these points are
symmetric to points K, L and M through O. Let us prove that the distance from
line l that passes through point O perpendicularly to plane KLM to either of lines
B1C1, DC and AA1 is equal to

√
2R.

Indeed, K ′O ⊥ l and K ′O ⊥ B1C1 and therefore, the distance between lines l
and B1C1 is equal to K ′O =

√
2R; for the other lines the proof is similar.

Therefore, the radius of the cylinder with axis l tangent to the three given
cylinders is equal to (

√
2− 1)R.

It remains to verify that the distance from any line l′ that intersects triangle
KLM to one of the points K ′, L′, M ′ does not exceed

√
2R. Let, for example,

the intersection point X of line l′ with plane KLM lie inside triangle KOL. Then
M ′X ≤ √

2R.
11.20. In the process of the pulling the tetrahedron through the hole there will

necessarily become a moment when vertex B is to one side of the hole’s plane,
vertex A is in the hole’s plane and vertices C and D are to the other side of the
hole’s plane (or are in the hole’s plane). At this moment let the plane of the hole
intersect edges BC and BD at points M and N ; then the hole’s disk contains
triangle AMN .

Now, let us find out for which positions of points M and N the radius of the
disk that contains triangle AMN is the least possible.

First, suppose that triangle AMN is an acute one. Then the smallest disk
that contains it is its circumscribed disk (cf. Problem l5.127). If the sphere whose
equator is circumscribed about triangle AMN is not tangent to, say, edge BC, then
inside this sphere on edge BC in a vicinity of point M we can select a point M ′ such
that triangle AM ′N is still an acute one and the radius of its circumscribed circle is
smaller than the radius of the circle circumscribed about triangle AMN . Therefore,
in the position when the radius of the circle circumscribed about triangle AMN
is minimal the considered sphere is tangent to edges BC and BD and, therefore,
BM = BN = x.

Triangle AMN is an equilateral one and in it MN = x and AM = AN =√
x2 − x + 1. Let K be the midpoint of MN , let L be the projection of B to plane

AMN . Since the center of the sphere lies in this plane and lines BM and BN
are tangent to the given sphere, we see that LN and LM are tangent to the circle
circumscribed about triangle AMN . If ∠MAN = α, then

LK = MK tanα =
x2
√

3x2 − 4x + 4
2(x2 − 2x + 2)

.
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In triangle AKB, angle ∠AKB = β is an obtuse one and

cosβ =
3x− 2√

3(3x2 − 4x + 4)
.

Therefore,

LK = −KB cos β =
x(2− 3x)

2
√

3x2 − 4x + 4
.

By equating the two expressions for LK we get an equation for x :

(1) 3x3 − 6x2 + 7x− 2 = 0.

The radius R of the circumscribed circle of triangle AMN is equal to x2−x+1√
3x2−4x+4

.
The approximate calculations for the root of the equation (the error not exceeding
0.00005) yield the values x ≈ 0.3913, R ≈ 0.4478.

Now, suppose that triangle AMN is not an acute one. Let BM = x, BN = y.
Then

AM2 = 1− x + x2, AN2 = 1− y + y2 and MN2 = x2 + y2 − xy.

Angle ∠MAN is an acute one because AM2 + AN2 > MN2. Let, for definiteness,
angle ∠ANM be not acute, i.e.,

1− x + x2 ≥ (x2 + y2 − xy) + (1− y + y2).

Then 0 ≤ x ≤ y(1−2y)
1−y ; hence, y ≤ 0.5 and, therefore, x ≤ 2y(1 − 2y) ≤ 1

4 . On
segment [0, 1

2 ], the quadratic 1− x + x2 diminishes, hence,

AM2 ≥ 1− 1
4

+
1
16

=
13
16

> (0.9)2,

i.e., in the case of an acute triangle AMN the radius of the smallest disk that
contains it is greater than for the case of an acute one.

Let us prove that the tetrahedron can pass through the hole of the found radius R.
On the tetrahedron’s edges draw segments of length x, where x is a root of equation
(1), as indicated on Fig. 84 and perform the following sequence of motions:

Figure 84 (Sol. 11.20)
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a) let us place the tetrahedron so that the hole’s circle becomes the circumscribed
circle of triangle AMN and start rotating the tetrahedron about line MN until
point V becomes in the hole’s plane;

b) let us shift the tetrahedron so that plane V MN remains parallel to its initial
position and points P and Q become on the hole’s boundary;

c) let us rotate the tetrahedron about line PQ until vertex D becomes in the
hole’s plane.

Let us prove that all these operations are feasible. When we rotate the tetra-
hedron about line MN the hole’s plane intersects it along the trapezoid whose
diagonal diminishes from NA to NV and the acute angle at the greatest base in-
creases to 90◦. Therefore, the radius of the circle circumscribed about the trapezoid
diminishes. Therefore, operation a) and, similarly, operation c) are feasible.

On edge BC, take point T . The section of tetrahedron ABCD parallel to V MN
and passing through point T is a rectangular with diagonal

√
t2 + (1− t)2 =

√
2(t− 0.5)2 + 0.52, where t = BT .

This implies the feasibility of operation b).
Answer: through an opening of radius 0.45 the tetrahedron can pass while it

cannot pass through a hole of radius 0.44.
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CHAPTER 12. CONSTRUCTIONS AND LOCI

§1. Skew lines

12.1. Find the locus of the midpoints of segments such that they are parallel to
a given plane and their endpoints lie on two given skew lines.

12.2. Find the locus of the midpoints of segments of given length d whose
endpoints lie on two given perpendicular skew lines.

12.3. Given three pairwise skew lines, find the locus of the intersection points
of the medians of triangles parallel to a given plane and whose vertices lie on the
given lines.

12.4. Given two skew lines in space and a point A on one of them. Through
these given lines two perpendicular planes constituting a right dihedral angle are
drawn. Find the locus of the projections of A on the edges of such dihedral angles.

12.5. Given line l and a point A. A line l′ skew with l is drawn through A. Let
MN be the common perpendicular to these two lines with point M on l′. Find the
locus of such points M .

12.6. Pairwise skew lines l1, l2 and l3 are perpendicular to one line and intersect
it at points A1, A2 and A3, respectively. Let M and N be points on lines l1 and l2,
respectively, such that lines MN and l3 intersect. Find the locus of the midpoints
of segments MN .

12.7. Two perpendicular skew lines are given. The endpoints of segment A1A2

parallel to a given plane lie on the skew lines. Prove that all the spheres with
diameters A1A2 have a common circle.

12.8. Points A and B move along two skew lines with constant but nonequal
speeds; let k be the ratio of these speeds. Let M and N be points on line AB such
that AM : BM = AN : BN = k (point M lies on segment AB). Prove that points
M and N move along two perpendicular lines.

§2. A sphere and a trihedral angle

12.9. Lines l1 and l2 are tangent to a sphere. Segment MN with its endpoints
on these lines is tangent to the sphere at point X. Find the locus of such points X.

12.10. Points A and B lie on the same side with respect to plane Π so that line
AB is not parallel to Π. Find the locus of the centers of spheres that pass through
the given points and are tangent to the given plane.

12.11. The centers of two spheres of distinct radius lie in plane Π. Find the
locus of points X in this plane through which one can draw a plane tangent to
spheres: a) from the inside; b) from the outside. (We say that spheres are tangent
from the inside if they lie on the different sides with respect to the tangent plane;
they are tangent from the outside if the spheres lie on the same side with respect
to the tangent plane).

* * *

12.12. Two planes parallel to a given plane Π intersect the edges of a trihedral
angle at points A, B, C and A1, B1, C1 respectively (we denote by the same letters
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points that lie on the same edge). Find the locus of the intersection points of planes
ABC1, AB1C and A1BC.

12.13. Find the locus of points the sum of whose distances from the planes of
the faces of a given trihedral angle is a constant.

12.14. A circle of radius R is tangent to faces of a given trihedral angle all the
planar angles of which are right ones. Find the locus of all the possible positions
of its center.

§3. Various loci

12.15. In plane, an acute triangle ABC is given. Find the locus of projections
to this plane of all the points X for which triangles ABX, BCX and CAX are
acute ones.

12.16. In tetrahedron ABCD, height DP is the smallest one. Prove that point
P belongs to the triangle whose sides pass through vertices of triangle ABC parallel
to its opposite sides.

12.17. A cube is given. Vertices of a convex polyhedron lie on its edges so that
on each edge exactly one vertex lies. Find the set of points that belong to all such
polyhedrons.

12.18. Given plane quadrangle ABCD, find the locus of points M such that
it is possible to intersect the lateral surface of pyramid MABCD with a plane so
that the section is a) a rectangle; b) a rhombus.

12.19. A broken line of length a starts at the origin and any plane parallel to a
coordinate plane intersects the broken line not more than once. Find the locus of
the endpoints of such broken lines.

§4. Constructions on plots

12.20. Consider cube ABCDA1B1C1D1 with fixed points P , Q, R on edges
AA1, BC, B1C1, respectively. Given a plot of the cubes’s projection on a plane
(Fig. 85). On this plot, construct the section of the cube with plane PQR.

Figure 85

12.21.Consider cube ABCDA1B1C1D1 with fixed points P , Q, R on edges AA1,
BC and C1D1 respectively. Given a plot of the cubes’s projection on a plane. On
this plot, construct the section of the cube with plane PQR.

12.22. a) Consider trihedral angle Oabc on whose faces Obc and Oac points
A and B are fixed. Given the plot of its projection on a plane, construct the
intersection point of line AB with plane Oab.
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b) Consider a trihedral angle with three points fixed on its faces. Given a plot of
its projection on a plane. On this plot, construct the section of the trihedral angle
with the plane that passes through fixed points.

12.23. Consider a trihedral prism with parallel edges a, b and c on the lateral
faces of which points A, B and C are fixed. Given the plot of its projection on a
plane. On this plot, construct the section of the prism with plane ABC.

12.24. Let ABCDA1B1C1D1 be a convex hexahedron with tetrahedral faces.
Given a plot of the three of the faces of this 6-hedron at vertex B (and, therefore,
of seven of the vertices of the 6-hedron). Construct the plot of its 8-th vertex D1.

§5. Constructions related to spatial figures

12.25. Given six segments in the plane equal to edges of tetrahedron ABCD,
construct a segment equal to the height ha of this tetrahedron.

12.26. Three angles equal to planar angles α, β and γ of a trihedral angle are
drawn in the plane. Construct in the same plane an angle with measure equal to
that of the dihedral angle opposite to the planar angle α.

12.27. Given a ball. In the plane, with the help of a compass and a ruler,
construct a segment whose length is equal to the radius of this ball.

Solutions

12.1. Let given lines l1 and l2 intersect the given plane Π at points P and Q (if
either l1 ‖ Π or l2 ‖ Π, then there are no segments to be considered). Let us draw
through the midpoint M of segment PQ lines l′1 and l′2 parallel to lines l1 and l2,
respectively. Let a plane parallel to plane Π intersect lines l1 and l2 at points A1

and A2 and lines l′1 and l′2 at points M1 and M2, respectively. Then A1A2 is the
desired segment and its midpoint coincides with the midpoint of segment M1M2

because M1A1M2A2 is a parallelogram. The midpoints of segments M1M2 lie on
one line, since all these segments are parallel to each other.

12.2. The midpoint of any segment with the endpoints on two skew lines lies
in the plane parallel to the skew lines and equidistant from them. Let the distance
between the given lines be equal to a. Then the length of the projection to the
considered “mid-plane” of a segment of length d with the endpoints on given lines
is equal to

√
d2 − a2. Therefore, the locus to be found consists of the midpoints

of segments of length
√

d2 − a2 with the endpoints on the projections of the given
lines to the “mid-plane” (Fig. 86). It is easy to verify that OC = AB

2 , i.e., the
required locus is a circle with center O and radius

√
d2−a2

2 .

Figure 86 (Sol. 12.2)
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12.3. The locus of the midpoints of sides AB of the indicated triangles is line l
(cf. Problem 12.1). Consider the set of points that divide the segments parallel to
the given plane with one endpoint on line l and the other one on the third of the
given planes in ratio 1 : 2. This set is the locus in question.

A slight modification in the solution of Problem 12.1 allows us to describe this
locus further, namely to show that it is actually a line.

12.4. Let π1 and π2 be perpendicular planes passing through lines l1 and l2; let
l be their intersection line; X the projection to l of point A that lies on line l1. Let
us draw plane Π through point A perpendicularly to l2. Since Π ⊥ l2, it follows
that Π ⊥ π2. Hence, line AX lies in plane Π and, therefore, if B is the intersection
point of Π and l2, then ∠BXA = 90◦, i.e., point X lies on the circle with diameter
AB constructed in plane Π.

12.5. Let us draw the plane perpendicular to l through point A. Let M ′ and N ′

be the projections of points M and N to this plane. Since MN ⊥ l, it follows that
M ′N ′ ‖ MN . Line MN is perpendicular to plane AMM ′ because NM ⊥ MM ′

and NM ⊥ AM . Hence, NM ⊥ AM ′ and, therefore, point M ′ lies on the circle
with diameter N ′A. It follows that the locus to be found is a cylinder without two
lines. The diametrically opposite generators of this cylinder are lines l and the line
t that passes through point A parallel to l; the deleted lines are l and t.

12.6. The projection to a plane perpendicular to l3 sends l3 to point A3; the
projection M ′N ′ of line MN passes through this point; moreover, the projections
of lines l1 and l2 are parallel. Therefore,

{A1M
′} : {A2N

′} = {A1A3} : {A2A3} = λ

is a constant, and, therefore, {A1M} = ta and {A2N} = tb. Let O and X be the
midpoints of segments A1A2 and MN . Then

2{OX} = {A1M}+ {A2N} = t(a + b),

i.e., all the points X lie on one line.
12.7. Let B1B2 be the common perpendicular to given lines (points A1 and B1

lie on one given line). Since A2B1 ⊥ A1B1, point B1 belongs to the sphere with
diameter A1A2. Similarly, point B2 lies on this sphere. The locus of the midpoints
of segments A1A2, i.e., of the centers of the considered spheres is a line l (Problem
12.1). Any point of this line is equidistant from B1 and B2, hence, l ⊥ B1B2.
Let M be the midpoint of segment B1B2;let O be the base of the perpendicular
dropped to line l from point M . The circle of radius OB1 with center O passing
through points B1 and B2 is the one to be found.

12.8. Let A1 and B1 be positions of points A and B at another moment of
time; Π a plane parallel to the given skew lines. Let us consider the projection to
Π parallel to line A1B1. Let A′, B′, M ′ and N ′ be projections of points A, B, M
and N , respectively; let C ′ be the projection of line A1B1. Points M and N move
in fixed planes parallel to plane Π and, therefore, it suffices to verify that points
M ′ and N ′ move along two perpendicular lines. Since

A′M ′ : M ′B′ = k = A′C ′ : C ′B′,

it follows that C ′M ′ is the bisector of angle A′C ′B′. Similarly, C ′N ′ is the bisector
of an angle adjacent to angle A′C ′B′. The bisectors of two adjacent angles are
perpendicular.
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12.9. Let line l1 that contains point M be tangent to the sphere at point A and
line l2 at point B. Let us draw through line l1 the plane parallel to l2 and consider
the projection to this plane parallel to line AB. Let N ′ and X ′ be the images of
points N and X under this projection. Since AM = MX and BN = NX, we have

AM : AN ′ = AM : BN = XM : XN = X ′M : X ′N ′

and, therefore, AX ′ is the bisector of angle MAN ′. Hence, point X lies in the
plane that passes through line AB and constitutes equal angles with lines l1 and l2
(there are two such planes). The desired locus consists of two circles without two
points: the circles are those along which these planes intersect the given sphere and
the points to be excluded are A and B.

12.10. Let C be the intersection point of line AB with the given plane, M the
tangent point of one of the spheres to be found with plane Π. Since CM2 = CA·CB,
it follows that point M lies on the circle of radius

√
CA · CB centered at C. Hence,

the center O of the sphere lies on the lateral surface of a right cylinder whose base is
this circle. Moreover, the center of the sphere lies in the plane that passes through
the midpoint of segment AB perpendicularly to it.

Now, suppose that point O is equidistant from A and B and the distance from
point C to the projection M of point O to plane Π is equal to

√
CA · CB. Let CM1

be the tangent to the sphere of radius OA centered at O. Then CM = CM1 and,
therefore,

OM2 = CO2 − CM2 = CO2 − CM2
1 = OM2

1 ,

i.e., point M belongs to the considered sphere. Since OM ⊥ Π, it follows that M
is the tangent point of this sphere with plane Π.

Thus, the locus in question is the intersection of the lateral surface of the cylinder
with the plane.

12.11. a) Let the given spheres intersect plane Π along circles S1 and S2. The
common interior tangents to these circles split the plane into 4 parts. Let us consider
the right circular cone whose axial section is the part that contains S1 and S2. The
planes tangent to the given spheres from the inside are tangent to this cone. Any
such plane intersects plane Π along the line that lies outside the axial section of the
cone. The locus we are trying to find consists of points that lie outside the axial
section of the cone (the boundary of the axial section belongs to the locus).

b) is solved similarly to heading a). We draw the common outer tangents and
consider the axial section that consists of the part of the plane containing both
circles and the part symmetric to it.

12.12. The intersection of planes ABC1 and AB1C is the line AM , where M is
the intersection point of diagonals BC1 and B1C of trapezoid BCC1B1. Point M
lies on line l that passes through the midpoints of segments BC and B1C1 and the
vertex of the given trihedral angle (see Problem 1.22). Line l is uniquely determined
by plane Π and, therefore, plane Πa that contains line l and point A is also uniquely
determined.

The intersection point of line AM with plane A1BC belongs to plane Πa because
the whole line AM belongs to this plane. Let us construct plane Πa similarly to
Πb. Let m be the intersection line of these planes (plane Πc also passes through
line m). The desired locus consists of points of this line that lie inside the given
trihedral angle.
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12.13. On the edges of the given trihedral angle with vertex O select points
A, B and C the distance from which to the planes of faces is equal to the given
number a. The area S of each of the triangles OAB, OBC and OCA is equal to
3V
a , where V is the volume of tetrahedron OABC. Let point X lie inside trihedral

angle OABC and the distance from it to the planes of its faces be equal to a1, a2

and a3. Then the sum of the volumes of the pyramids with vertex X and bases
OAB, OBC and OCA is equal to S(A1+a2+a3)

3 . Therefore,

V =
S(a1 + a2 + a3)

3
± v,

where v is the volume of tetrahedron XABC. Since V = Sa
3 , it follows that

a1 + a2 + a3 = a if and only if v = 0, i.e., X lies in plane ABC.
Let points A′, B′ and C ′ be symmetric to A, B and C, respectively, through

point O. Since any point lies inside one of 8 trihedral angles formed by planes of
the faces of the given trihedral angle, the locus in question is the surface of the
convex polyhedron ABCA′B′C ′.

12.14. Let us introduce a rectangular coordinate system directing its axes along
the edges of the given trihedral angle. Let O1 be the center of the circle; Π the
plane of the circle, α, β and γ the angles between plane Π and coordinate planes.
Since the distance from point O1 to the intersection line of planes Π and Oyz is
equal to R and the angle between these planes is equal to α, it follows that the
distance from point O1 to plane Oyz is equal to R sin α. Similar arguments show
that the coordinates of point O1 are

(R sin α,R sin β, R sin γ).

Since
cos2 α + cos2 β + cos2 γ = 1

(Problem 1.21), it follows that

sin2 α + sin2 β + sin2 γ = 2

and, therefore, OO1 =
√

2R. Moreover, the distance from point O1 to any face of
the trihedral angle does not exceed R. The desired locus is a part of the sphere
of radius

√
2R centered at the origin and bounded by planes x = R, y = R and

z = R.
12.15. If angles XAB and XBA are acute ones, then point X lies between the

planes drawn through points A and B perpendicularly to AB (for points X that
do not lie on segment AB the converse is also true). Therefore, our locus lies inside
(but not on the sides) of the convex hexagon whose sides pass through the vertices
of triangle ABC perpendicularly to its sides (Fig. 87).

If the distance from point X to plane ABC is greater than the longest side of
triangle ABC, then angles ∠AXB, ∠AXC and ∠BXC are acute ones. Therefore,
the desired locus is the interior of the indicated hexagon.

12.16. It suffices to verify that the distance from point P to each side of triangle
ABC does not exceed that from the opposite vertex. Let us prove this statement,
for example, for side BC. To this end, let us consider the projection to the plane
perpendicular to line BC; this projection sends points B and C to one point M
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Figure 87 (Sol. 12.15)

Figure 88 (Sol. 12.16)

(Fig. 88). Let A′Q′ be the projection of the corresponding height of the tetrahedron.
Since D′P ≤ A′Q′ by the hypothesis, D′M ≤ A′M . It is also clear that PM ≤
D′M .

12.17. Each of the considered polyhedrons is obtained from the given cube
ABCDA1B1C1D1 by cutting off tetrahedrons from each of the trihedral angles at
its vertices. The tetrahedron which is cut off the trihedral angle at vertex A is
contained in tetrahedron AA1BD. Thus, if we cut off the cube tetrahedrons, each
of which is given by three edges of the cube that exit one point, then the remaining
part of the cube is contained in any of the considered polyhedrons. It is easy to
verify that the remaining part is an octahedron with vertices in the centers of the
cube’s faces. If the point does not belong to this octahedron, then it is not difficult
to indicate a polyhedron to which it does not belong; for such a polyhedron we may
take either tetrahedron AB1CD1 or tetrahedron A1BC1D.

12.18. Let P and Q be the intersection points of the extensions of the opposite
sides of quadrilateral ABCD. Then MP and MQ are intersection lines of the
planes of opposite faces of pyramid MABCD. The section of a pair of planes that
intersect along line l is of the form of two parallel lines only if the pair of sections
is parallel to l. Therefore, the section of pyramid MABCD is a parallelogram only
if the plane of the section is parallel to plane MPQ; the sides of the parallelogram
are parallel to MP and MQ.

a) The section is a rectangular only if ∠PMQ = 90◦, i.e., point M lies on the
sphere with diameter PQ; the points of this sphere that lie in the plane of the given
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quadrilateral should be excluded.
b) Let K and L be the intersection points of the extensions of diagonals AC

and BD with line PQ. Since the diagonals of the parallelogram obtained in the
section of pyramid MABCD are parallel to lines MK and ML, it follows that it
is a rhombus only if ∠KML = 90◦, i.e., point M lies on the sphere with diameter
KL; the points of the sphere that lie in the plane of the given quadrilateral should
be excluded.

12.19. Let (x, y, z) be coordinates of the endpoint of the broken line, (xi, yi, zi)
the coordinates of the vector of the i-th link of the broken line. The conditions
of the problem imply that numbers xi, yi and zi are nonzero and their sign is the
same as that of numbers x, y and z, respectively. Therefore,

|x|+ |y|+ |z| =
∑

(|xi|+ |yi|+ |zi|)

and
|xi|+ |yi|+ |zi| > li,

where li is the length of the i-th link of the broken line. Hence,

|x|+ |y|+ |z| >
∑

li = a.

Moreover, the length of the vector (x, y, z) does not exceed the length of the broken
line, i.e., it does not exceed a.

Now, let us prove that all the points of the ball of radius a centered at the origin
lie outside the octahedron given by equation

|x|+ |y|+ |z| ≤ a

except for the points of coordinate planes that belong to the locus to be found. Let
M = (x, y, z) be a point on a face of the indicated octahedron. Then the broken
line with vertices at points (0, 0, 0), (x, 0, 0), (x, y, 0) and (x, y, z) is of length a.
By “stretching” this broken line, i.e., by moving its endpoint along the ray OM we
sweep over all the points of ray OM that lie between the sphere and the octahedron
(except for the point on the octahedron’s boundary).

Figure 89 (Sol. 12.20)
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12.20. In the process of construction we can make use of the fact that the
lines along which a plane intersects a pair of parallel planes are parallel. The way
of construction is clear from Fig. 89. First, we draw a line parallel to line RQ
through point P and find the intersection points of this line with lines AD and
A1D1. Then we connect these points with points Q and R and obtain sections of
faces ABCD and A1B1C1D1. On the section of one of the two remaining faces we
have already constructed two points and now it only remains to connect them.

12.21. In this case the considerations used in the preceding problem are not suf-
ficient for the construction. Therefore, let us first construct point M of intersection
of line PR and the plane of face ABCD as follows.

Point A is the projection of point P to the plane of face ABCD and it is easy to
construct the projection R′ of point R to this plane (RC1CR′ is a parallelogram).
Point M is the intersection point of lines PR and AR′. By connecting points M
and Q we get the section of face ABCD. The further construction is performed by
the same method as in the preceding problem (Fig. 90).

Figure 90 (Sol. 12.21)

12.22. a) Let P be an arbitrary point on edge c. Plane PAB intersects edges
a and b at the same points at which lines PB and PA respectively intersect them.
respectively. Denote these points by A1 and B1. Then the desired point is the
intersection point of lines A1B1 and AB (Fig. 91).

Figure 91 (Sol. 12.22)
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b) Let points A, B and C be selected on faces Obc, Oac and Oab. By making
use of part a) it is possible to construct the intersection point of line AB with plane
OAb. Now, on plane Oab two points that belong to plane ABC are known: the just
constructed point and point C. By connecting them we get the required section
with plane Oab. The remaining part of the construction is obvious.

12.23. Let points A, B and C lie on the faces opposite to lines a, b and c. Let
us construct intersection point X of line AB with the face in which point C lies.
To this end let us select on line c an arbitrary point P and construct the section
of the prism with plane PAB, i.e., let us find points A1 and B1 at which lines PA
and PB intersect edges b and a, respectively. Clearly, X is the intersection point
of lines AB and A1B1. Connecting points X and C we get the desired section of
the face opposite to edge C. The remaining part of the construction is obvious.

12.24. First, let us construct the intersection line of planes of faces ABCD and
A1B1C1D1. The intersection point P of lines AB and A1B1 and the intersection
point Q of lines BC and B1C1 belong to this plane. Let M be the intersection
point of lines DA and PQ. Then M is the intersection point of face ADD1A1 with
line PQ, i.e., point D1 lies on line MA1. Similarly, if N is the intersection point of
lines CD and PQ, then point D1 lies on line C1N (Fig. 92).

Figure 92 (Sol. 12.24)

12.25. Let us drop perpendicular AA1 to plane BCD and perpendiculars AB′,
AC ′ and AD′ to lines CD, BD and BC, respectively, from vertex A of tetrahedron
ABCD. By the theorem on three perpendiculars A1B

′ ⊥ CD, A1C
′ ⊥ BD and

A1D
′ ⊥ BC.

This implies the following construction. Let us construct the unfolding of tetra-
hedron ABCD and drop heights from vertex A in all the faces that contain it (Fig.
93).

Point A1 is the intersection point of these heights and the desired segment is a
leg of a right triangle with hypothenuse AB′ and a leg A1B

′.
12.26. Let us considered the trihedral angle with planar angles α, β and γ.

Let O be its vertex. On the edge opposite to angle α, take point A and let us
draw perpendiculars AB and AC to edge OA through point A in the planes of the
faces. This construction can be performed on the given plane for the unfolding
of the trihedral angle (Fig. 94). Let us now construct triangle BA′C with sides
BA′ = BA1 and CA′ = CA2. Angle BA′C is the one to be constructed.
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Figure 93 (Sol. 12.25)

Figure 94 (Sol. 12.26)

12.27. On the given ball, let us construct with the help of a compass a circle
with center A and, on this circle, fix three distinct arbitrary points. With the help
of a compass it is easy to construct on a plane a triangle equal to the triangle with
vertices at these points. Next, let us construct the circle circumscribed about this
triangle and consequently find its radius.

Figure 95 (Sol. 12.27)

Let us consider the section of the given ball that passes through its center O,
point A and a point M of the circle constructed on the ball. Let P be the base
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of the perpendicular dropped from M to segment OA (Fig. 95). The lengths of
segments AM and MP are known and, therefore, it is possible to construct segment
AO.
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CHAPTER 13. CERTAIN PARTICULAR

METHODS FOR SOLVING PROBLEMS

§1. The principle of extremal element

13.1. Prove that every tetrahedron contains an edge that forms acute angles
with the edges that go out of its endpoints.

13.2. Prove that in every tetrahedron there is a trihedral angle at a vertex with
all the plane angles being acute ones.

13.3. Prove that in any tetrahedron there are three edges that go out of one
vertex such that from these edges a triangle can be constructed.

13.4. A regular n-gon A1 . . . An lies at the base of pyramid A1 . . . AnS. Prove
that if

∠SA1A2 = ∠SA2A3 = · · · = ∠SAnA1,

then the pyramid is a regular one.
13.5. Given a right triangular prism ABCA1B1C1, find all the points on face

ABC equidistant from lines AB1, BC1 and CA1.
13.6. On each of 2k + 1 planets sits an astronomer who observes the planet

nearest to him (all the distances between planets are distinct). Prove that there is
a planet that nobody observes.

13.7. There are several planets — unit spheres — in space. Let us fix on each
planet the set of all the points from which none of the other planets is seen. Prove
that the sum of the areas of the fixed parts is equal to the surface area of one of
the planets.

13.8. Prove that the cube cannot be divided into several distinct small cubes.

§2. Dirichlet’s principle

13.9. Prove that any convex polyhedron has two faces with an equal number of
sides.

13.10. Inside a sphere of radius 3 several balls the sum of whose radii is equal
to 25 are placed (these balls can intersect). Prove that for any plane there exists a
plane parallel to it and intersecting at least 9 inner balls.

13.11. A convex polyhedron P1 with nine vertices A1, A2, . . . , A9 is given. Let
P2, P3, . . . , P9 be polyhedrons obtained from the given one by parallel transla-
tions by vectors {A1A2}, . . . , {A1A9}, respectively. Prove that at least two of 9
polyhedrons P1, P2, . . . , P9 have a common interior point.

13.12. A searchlight that lights a right trihedral angle (octant) is placed in the
center of a cube. Is it possible to turn it so that it doesn’t light any of the cube’s
vertices?

13.13. Given a regular tetrahedron with edges of unit length, prove the following
statements:

a) on the surface of the tetrahedron 4 points can be fixed so that the distance
from any point on the surface to one of these four points would not exceed 0.5;

b) it is impossible to fix 3 points on the surface of the tetrahedron with the above
property.
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§3. Entering the space

While solving planimetric problems the consideration that the plane can be
viewed as lying in space and, therefore, some auxiliary elements outside the given
plane can be used is sometimes of essential help. Such a method for solving plani-
metric problems is called entering the space method.

13.14. Along 4 roads each of the form of a straight line no two of which are
parallel and no three of which pass through one point, 4 pedestrians move with
constant speeds. It is known that the first pedestrian met the second one, third
one and fourth one, and the second pedestrian met the third and the fourth ones.
Prove that then the third pedestrian met the fourth one.

13.15. Three lines intersect at point O. Points A1 and A2 are taken on the first
line, points B1 and B2 are taken on the second line, points C1 and C2 are taken
on the third one. Prove that the intersection points of lines A1B1 and A2B2, B1C1

and B2C2, A1C1 and A2C2 lie on one line (we assume that the lines intersect, i.e.,
are not parallel).

Figure 95 (13.16)

13.16. Three circles intersect pairwise and are placed as plotted on Fig. 96.
Prove that the common chords of the pairs of these circles intersect at one point.

13.17. Common exterior tangents to three circles on the plane intersect at points
A, B and C. Prove that these points lie on one line.

13.18. What least number of bands of width 1 are needed to cover a disk of
diameter d?

13.19. On sides BC and CD of square ABCD, points M and N are taken such
that CM +CN = AB. Lines AM and AN divide diagonal BD into three segments.
Prove that from these segments one can always form a triangle one angle of which
is equal to 60◦.

13.20. On the extensions of the diagonals of a regular hexagon, points K, L and
M are fixed so that the sides of the hexagon intersect the sides of triangle KLM
at six points that are vertices of a hexagon H. Let us extend the sides of hexagon
H that do not lie on the sides of triangle KLM . Let P , Q, R be their intersection
points. Prove that points P , Q, R lie on the extensions of the diagonals of the
initial hexagon.

13.21. Consider a lamina analogous to that plotted on Fig. 97 a) but composed
of 3n2 rhombuses. It is allowed to interchange rhombuses as shown on Fig. 98.
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Figure 97 13.21)

Figure 98 (13.21)

What is the least possible number of such operations required to get the lamina
plotted on Fig. 97 b)?

13.22. A regular hexagon is divided into parallelograms of equal area. Prove
that the number of the parallelograms is divisible by 3.

13.23. Quadrilateral ABCD is circumscribed about a circle and its sides AB,
BC, CD and DA are tangent to the circle at points K, L, M and N , respectively.
Prove that lines KL, MN and AC either intersect at one point or are parallel.

13.24. Prove that the lines intersecting the opposite vertices of a circumscribed
hexagon intersect at one point. (Brianchon’s theorem.)

13.25. A finite collection of points in plane is given. A triangulation of the
plane is a set of nonintersecting segments with the endpoints at the given points
such that any other segment with endpoints at the given points intersects at least
one of the given segments (Fig. 99). Prove that there exists a triangulation such
that none of the circumscribed circles of the obtained triangles contains inside it
any other of the given points and if no 4 of the given points lie on one circle, then
such a triangulation is unique.

* * *

13.26. On the plane three rays with a common source are given and inside each
of the angles formed by these rays a point is fixed. Construct a triangle so that its
vertices would lie on the given rays and sides would pass through the given points.
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Figure 99 (13.25)

13.27. Given three parallel lines and three points on the plane. Construct a
triangle whose sides (or their extensions) pass through the given points and whose
vertices lie on the given lines.

Solutions

13.1. If AB is the longest side of triangle ABC, then ∠C ≥ ∠A and ∠C ≥ ∠B;
therefore, both angles A and B should be acute ones. Thus, all the acute angles
are adjacent to the longest edge of the tetrahedron.

13.2. The sum of the angles of each face is equal to π and any tetrahedron has
4 faces. Therefore, the sum of all the plane angles of a tetrahedron is equal to 4π.
Since a tetrahedron has 4 vertices, there exists a vertex the sum of whose planar
angles does not exceed π. Hence, all the plane angles at this vertex are acute ones
because any plane angle of a trihedral angle is smaller than the sum of the other
two planar angles (Problem 5.4).

13.3. Let AB be the longest edge of tetrahedron ABCD. Since

(AC +AD−AB)+(BC +BD−BA) = (AD+BD−AB)+(AC +BC−AB) ≥ 0,

it follows that either
AC + AD −AB > 0

or
BC + BD −BA > 0.

In the first case the triangle can be formed of the edges that exit vertex A and in
the second one of the edges that exit vertex B.

13.4. On the plane, let us construct angle ∠BAC equal to α, where α =
∠SA1A2 = · · · = ∠SAnA1. Let us assume that the length of segment AB is equal
to that of the side of the regular polygon serving as the base of the pyramid. Then
for each i = 1, . . . , n one can construct point Si on ray AC so that 4ASiB =
4AiSAi+1.

Suppose not all points Si coincide. Let Sk be the point nearest to B and Sl the
point most distant from B. Since SkSl > |SkB − SlB|, we have |SkA − SlA| >
|SkB − SlB|, i.e., |Sk−1B − Sl−1B| > |SkB − SlB|. But in the right-hand side
of the latter inequality there stands the difference between the greatest and the
smallest numbers and in the left-hand side the difference of two numbers confined
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between these two extreme ones. Contradiction. Hence, all the points Si coincide
and, therefore, point S is equidistant from the vertices of base A1 . . . An.

13.5. Let O be the point on face ABC equidistant from the mentioned lines.
We may assume that A is the most distant from O point of base ABC. Let us
consider triangles AOB1 and BOC1. Sides AB1 and BC1 of these triangles are
equal and these are the longest sides (cf. Problem 10.5), i.e., the bases of the
heights dropped to these sides lie on the sides themselves. Since these heights are
equal, the inequality AO ≥ BO implies OB1 ≤ OC1. In right triangles ∠BB1O
and ∠CC1O legs BB1 and CC1 are equal and, therefore, BO ≤ CO.

Thus, the inequality AO ≥ BO implies BO ≤ CO. By similar argument we
deduce that CO ≥ AO and AO ≤ BO. Therefore, AO = BO = CO, i.e., O is the
center of equilateral triangle ABC.

13.6. Let us consider a pair of planets, A and B, with the shortest distance be-
tween them. Then the astronomers observe the each other’s planets: the astronomer
of planet A observes planet B and the astronomer from planet B observes planet
A. The following two cases are possible:

1) At least one of the planets, A or B, is observed by some other astronomer.
Then for 2k − 1 planets there remain 2k − 2 observers and, therefore, there is a
planet which nobody observes.

2) None of the remaining astronomers observes either planet A or planet B.
Then this pair of planets can be discarded; let us consider a similar system with
the number of planets smaller by 2. In the end either we either encounter the first
situation or there remains one planet which nobody observes.

13.7. First, let us consider the case of two planets. Each of them is divided by
the equator perpendicular to the segment that connects the centers of the planets
into two hemispheres such that from one hemisphere the other planet is seen and
from the other one it is not seen.

Notice that in order to be meticulous one should have to be more precise in
the formulation of the problem: how one should treat the points of these equators,
should one think that the other planet is seen from them or not? But since the area
of both equators is equal to zero this is actually immaterial. Therefore, in what
follows we will disregard the equatorial points.

Let O1, . . . , On be the centers of the given planets. It suffices to prove that
for any vector a of length 1 there exists a point X on the i-th planet for which
{OiX} = a and no other planet is seen from X; such a point is unique.

First, let us prove the uniqueness of point X. Suppose that {OiX} = {OjY }
and no other planet is seen from either X or Y . But from the considered above
case of two planets it follows that if the j-th planet is not seen from point X, then
the i-th planet will be seen from point Y . Contradiction.

Now, let us prove the existence of point X. Introduce a coordinate system
directing Ox-axis along vector a. Then the point on given planets for which the
coordinate x takes the greatest value is the desired one.

13.8. Suppose that the cube is divided into several distinct small cubes. Then
each of the faces of the cube becomes divided into small squares. Let us select the
smallest of all the squares on each face. It is not difficult to see that the smallest
of the small squares of the division of a square — a face — cannot be adjacent to
its boundary. Therefore, the small cube whose base is the selected smallest small
square lies inside the “well” formed by the cubes adjacent to its lateral faces. Thus,
its face opposite to the base should be filled in by yet smaller small cubes. Let us
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select the smallest among them and repeat for it the same arguments.
By continuing in this way we finally reach the opposite face and discover on

it a small square of the partition which is smaller than the one with which we
have started. But we have started with the smallest of all the small squares of the
partitions of the cube’s faces. Contradiction.

13.9. Let the number of the faces of the polyhedron be equal to n. Then each
of its faces can have 3 to n− 1 sides, i.e., the number of sides on each of its n faces
can take one of n− 3 values. Therefore, there are 2 faces with an equal number of
sides.

13.10. Let us consider the projection to a line perpendicular to the given plane.
This projection sends the given ball to a segment of length 3 and the inner balls
to segments the sum of whose lengths is equal to 25. Suppose that the sought for
plane does not exist, i.e., any plane parallel to the given one intersects not more
than 8 of the inner balls. Then any point on the segment of length 3 belongs to
not more than 8 segments — the projections of the inner balls. It follows that the
sum of the lengths of these segments does not exceed 24. Contradiction.

13.11. Let us consider the polyhedron P which is the image of polyhedron P1

under the homothety with center A1 and coefficient 2. Let us prove that all 9
polyhedrons lie inside P . Let A1, A∗2, . . . , A∗9 be the vertices of P . Let us prove
that, for instance, polyhedron P2 lies inside P . To this end it suffices to notice
that the parallel translation by vector {A1A2} sends points A1, A2, A3, . . . , A9

into points A2, A∗2, A′3, . . . , A′9, respectively, where A′i is the midpoint of segment
A∗2A

∗
i .

The sum of volumes of polyhedrons P1, P2, . . . , P9 that lie inside polyhedron P
is equal to 9V , where V is the volume of P1, and the volume of P is equal to 8V .
Therefore, the indicated 9 polyhedrons cannot help having common inner points.

13.12. First, let us prove that it is possible to rotate the searchlight so that it
would light neighbouring vertices of the cube, say A and B. If ∠AOB < 90◦, then
from the center O of the cube we can light segment AB. To this end it suffices to
place segment AB in one of the faces that the seasrchlight lights and then slightly
move the seasrchlight. It remains to verify that ∠AOB < 90◦. This follows from
the fact that

AO2 + BO2 =
3
4
AB2 +

3
4
AB2 > AB2.

Let us move the searchlight so that it would light two vertices of the cube. The
planes of faces of the angle lighted by the searchlight divide the space into 8 octants.
Since two of eight vertices of the cube lie in one of these octants, there exists an
octant which does not contain any vertex of the cube. This octant determines the
required position of the sesarchlight.

Remark. We did not consider the case when one of the planes of octant’s faces
contains a vertex of the cube. This case can be get rid of by slightly moving the
searchlight.

13.13. a) It is easy to verify that the midpoints of edges AB, BC, CD, DA
have the desired property. Indeed, two edges of each of the faces have fixed points.
Now, let us consider, for example, face ABC. Let B1 be the midpoint of edge AC.
Then triangles ABB1 and CBB1 are covered by disks of radius 0.5 with the centers
at the midpoints of sides AB and CD, respectively.

b) On the surface of the tetrahedron fix three points and consider the part of
the surface of the tetrahedron covered by balls of radius 0.5 centerd at these points.
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We will say that an angle of the face is covered if for some number ε > 0 all the
points of the face distant from the vertex of the given angle not further than ε are
covered. It suffices to prove that for the case of three points a non-covered angle of
the face always exists.

Figure 100 (Sol. 13.13)

If the ball of radius 0.5 centered at O covers two points, A and B, the distance
between which is equal to 1, then O is the midpoint of segment AB. Therefore,
if a ball of radius 0.5 covers two vertices of the tetrahedron then its center is the
midpoint of the edge that connects these vertices.

It is clear from Fig. 100 that in this case the ball covers 4 angles of the faces.
For the uncovered angles their bisectors are also uncovered and therefore, it cannot
happen that every single ball does not cover an angle but all the balls together do
cover it. It is also clear that if a ball only covers one vertex of the tetrahedron then
it only covers three angles.

There are 12 angles of the faces in the tetrahedron altogether. Therefore, 3 balls
of radius 0.5 each can cover them only if the centers of the balls are the midpoints
of the tetrahedron’s edges and not of arbitrary edges but of non-adjacent edges
because the balls with centers in the midpoints of adjacent edges have a common
angle covered by them. Clearly, it is impossible to select three pairwise nonadjacent
edges in a tetrahedron.

13.14. In addition to the coordinates in plane in which the pedestrians move
introduce the third coordinate system, the axis of time. Then consider the graphs
of the pedestrians’ movements. Clearly, the pedestrians meet when the graphs of
their movements intersect. As follows from the hypothesis, the graphs of the third
and the fouth pedestrians lie in the plane determined by the graphs of the first
two pedestrians (Fig. 101). Therefore, the graphs of the third and the fourth
pedestrians intersect.

13.15. In space, let us take points C ′1 and C ′2 so that their projections are C1 and
C2 and the points themselves do not lie in the initial plane. Then the projections of
the intersection points of lines A1C

′
1 and A2C

′
2, B1C

′
1 and B2C

′
2 are the intersection

points of lines A1C1 and A2C2, B1C1 and B2C2, respectively. Therefore, the points
indicated in the formulation of the problem lie on the projection of the intersection
line of planes A1B1C

′
1 and A2B2C

′
2, where line C ′1C

′
2 contains point O.

13.16. Let us construct spheres for which our circles are equatorial circles. Then
the common chords of pairs of these circles are the projections of the circles along
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Figure 101 (Sol. 13.14)

which the constructed spheres intersect. Therefore, it suffices to prove that the
spheres have a common point. To this end let us consider a circle along which the
two of our spheres intersect. One endpoint of the diameter of this circle that lies in
the initial plane is outside the third sphere whereas its other endpoint is inside it.
Therefore, the circle intersects the sphere, i.e., the three spheres have a common
point.

13.17. For each of our circles consider the cone whose base is the given circle
and height is equal to the radius of the circle. Let us assume that these cones are
situated to one side of the initial plane. Let O1, O2, O3 be the centers of the circles
and O′1, O′2, O′3 the vertices of the corresponding cones. Then the intersection
point of common exterior tangents to the i-th and j-th circles coincides with the
intersection point of line O′iO

′
j with the initial plane. Thus, points A, B and C lie

on the intersection line of plane O′
1O

′
2O

′
3 with the initial plane.

13.18. In the solution of this problem let us make use of the face that the area
of the ribbon cut on the sphere of diameter d by two parallel planes the distance
between which is equal to h is equal to πdh (see Problem 4.24).

Let a disk of diameter d be covered by k ribbons of width 1 each. Let us
consider the sphere for which this disk is the equatorial one. By drawing planes
perpendicular to the equator through the boundaries of the ribbons we get spherical
ribbons on the sphere such that the area of each of the ribbons is equal to πd (more
precisely, does not exceed πd because one of the boundaries of the initial ribbon
might not intersect the disk). These spherical ribbons also cover the whole sphere
and, therefore, their area is not less than the area of the sphere, i.e., kπd ≥ πd2

and k ≥ d. Clearly, if k ≥ d, then k ribbons can cover the disk of diameter d.
13.19. Let us complement square ABCD to cube ABCDA1B1C1D1. The

hypothesis of the problem implies that CM = DN and BM = CN . On edge BB1,
fix point K so that BK = DN . Let segments AM and AN intersect diagonal
BD at points P and Q, let R be the intersection point of segments AK and BA1.
Let us prove that sides of triangle PBR are equal to the corresponding segments
of diagonal BD. It is clear that BR = DQ. Now, let us prove that PR = PQ.
Since BK = CM and BM = CN , it follows that KM = MN and, therefore,
4AKM = 4ANM . Moreover, KR = NQ; hence, RP = PQ. It remains to notice
that ∠RBP = ∠A1BD = 60◦ because triangle A1BD is an equilateral one.

13.20. Let us denote the initial hexagon by ABCC1D1A1 and let us assume
that it is the projection of cube A′B′C ′D′A′1B

′
1C

′
1D

′
1 on the plane perpendicular

to diagonal D′B′
1. Let K ′, L′, M ′ be points on lines B′

1C
′
1, B′

1B
′ and B′

1A
′
1 whose

projections are K, L and M , respectively (Fig. 102).
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Figure 102 (Sol. 13.20)

Then H is the section of the cube by plane K ′L′M ′, in particular, the sides of
triangle PQR lie on the projections of the lines along which plane K ′L′M ′ intersects
the planes of the lower faces of the cube (we assume that point B′

1 lies above point
D′). Hence, points P , Q, R are the projections of the intersection points of the
extensions of the lower edges of the cube (D′A′, D′C ′, D′D′

1) with plane K ′L′M ′,
and, therefore, they lie on the extensions of the diagonals of the initial hexagon.

13.21. Let us consider the projection of the cube composed of n3 smaller cubes
to the plane perpendicular to its diagonal. Then we can consider Fig. 97 a) as the
projection of the whole of this cube and Fig. 97 b) as the projection of the back
faces of the cube only.

The admissible operation is the insertion or removal of the cube provided one
inserts the cube so that some three of its faces only touch the already existing
faces. It is clear that it is impossible to remove n3 small cubes for fewer than n3

operations whereas it is possible to do so in n3 operations.

Figure 103 (Sol. 13.22)

13.22. A regular hexagon divided into parallelograms can be represented as the
projection of a cube from which several rectangular parallelepipeds are cut off (Fig.
103). Then the projections of the rectangles parallel to the cube’s faces cover the
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faces in one coat. Therefore, in the initial hexagon the sum of the areas of the
parallelograms of each of the three types (parallelograms of one type have parallel
sides) is equal to 1

3 of the area of the hexagon. Since the parallelograms are of equal
area, the number of parallelograms of each type should be the same. Therefore,
their total number is divisible by 3.

13.23. Let us draw perpendiculars through the vertices of quadrilateral ABCD
to the plane in which it lies. On the the perpendiculars let us draw segments AA′,
BB′, CC ′ and DD′ equal to the tangents drawn to the circle from the corresponding
vertices of the quadrilateral so that points A′ and C ′ lie on the same side with
respect to the given plane and B′ and D′ lie on the other side (Fig. 104). Since
AA′ ‖ BB′ and ∠AKA′ = 45◦ = ∠BKB′, point K lies on segment A′B′. Similarly,
point L lies on segment B′C ′ and, therefore, line KL lies in plane A′B′C ′. Similarly,
line MN lies in plane A′D′C ′.

Figure 104 (Sol. 13.23)

If line A′C ′ is parallel to the initial plane, then lines AC, KL and MN are
parallel to line A′C ′. Now, let line A′C ′ intersect the initial plane at point P ,
i.e., let P be the intersection point of planes A′B′C ′, A′D′C ′ and the initial plane.
Then lines KL, AC and MN pass through point P .

13.24. Let us draw perpendiculars through vertices of the hexagon ABCDEF
to the plane in which it lies and draw segments AA′, . . . , FF ′ on them equal to the
tangents drawn to the circles from the corresponding vertices; let this be drawn so
that points A′, C ′ and E′ lie to one side of the given plane and B′, D′ and F ′ lie to
the other side (Fig. 105). Let us prove that lines A′B′ and E′D′ lie in one plane.
If AB ‖ ED, then A′B′ ‖ E′D′. If lines AB and ED intersect at point P , then let
us draw on the perpendicular to the initial plane through point P segments PP ′

and PP ′′ equal to the tangent to the circle drawn from point P .
Let Q be the tangent point of the circle with side AB. Then segments P ′Q, P ′′Q,

A′Q and B′Q form angles of 45◦ with line AB and lie in the plane perpendicular to
the given plane and passing through line AB. Therefore, line A′B′ passes through
either point P ′ or P ′′. It is not difficult to verify that line E′D′ also passes through
the same point. Therefore, lines A′B′ and E′D′ intersect, hence, lines A′D′ and
B′E′ also intersect.

We similarly prove that lines A′D′, B′E′ and C ′F ′ intersect pairwise. But since
these lines do not lie in one plane, they should intersect at one point. Lines AD,
BE and CF pass through the projectioin of this point to the given plane.

13.25. Let us take an arbitrary sphere tangent to the given plane and consider
the stereographic projection of the plane to the sphere. We get a finite set of points
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Figure 105 (Sol. 13.24)

on the sphere which are vertices of a convex polyhedron. To get the desired trian-
gulation, we have to connect those of the given points whose images on the sphere
are connected by the edges of the obtained convex polyhedron. The uniqueness of
the triangulation is equivalent to the fact that all the faces of the polyhedron are
triangles which, in turn, is equivalent to the fact that no four of the given points
lie on one circle.

13.26. It is possible to represent the given rays and points as a plot of the
projection of a trihedral angle with three points fixed on its faces. The problem
requires to construct a section of this angle with the plane that passes through
the given points. The corresponding construction is described in the solution of
Problem 12.22 b).

13.27. It is possible to represent the given lines as the projections of lines on
which the edges of the trihedral prism lie and the given points as the projections
of points that lie on the faces (or their extensions) of this prism. The problem
requires to construct the section of the prism with the plane that passes through
the given points. The corresponding construction is described in the solution of
Problem 12.23.
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CHAPTER 14. THE CENTER OF

MASS. THE MOMENT OF INERTIA.

BARYCENTRIC COORDINATES

§1. The center of mass and its main properties

Let there be given a system of mass points in space, i.e., a set of pairs (Xi,mi),
where Xi is a point in space and mi is a number such that m1 + · · · + mn 6= 0.
The center of mass of the system of points X1, . . . , Xn with masses m1, . . . , mn

respectively is a point O such that m1{OX1}+ · · ·+ mn{OXn} = {0}.
14.1. a) Prove that the center of mass of any (finite) system of points exists and

is unique.
b) Prove that if X is an arbitrary point on the plane and O is the center of mass

of points X1, . . . , Xn whose masses are equal to m1, . . . , mn, respectively, then

{XO} =
1

m1 + · · ·+ mn
(m1{XX1}+ · · ·+ mn{XXn}).

14.2. Prove that the center of mass of a system of points X1, . . . , Xn; Y1, . . . ,
Ym whose masses are equal to a1, . . . , an; b1, . . . , bm, respectively, coincides with
the center of mass of two points: the center of mass X of the first system with mass
a1 + · · ·+ an and the center of mass Y of the other system with mass b1 + · · ·+ bm.

14.3. a) Prove that the segments that connect the vertices of a tetrahedron with
the intersection points of the medians of the opposite faces intersect at one point
and each of them is divided at this point at the ratio 3:1 counting from the vertex.
(These segments are called the medians of the tetrahedron.)

b) Prove that the segments that connect the midpoints of the opposite edges of
the tetrahedron also intersect at the same point and each of them is divided by this
point in halves.

14.4. Given parallelepiped ABCDA1B1C1D1 and plane A1DB that intersects
diagonal AC1 at point M , prove that AM : AC1 = 1 : 3.

14.5. Given triangle ABC and line l; let A1, B1 and C1 be arbitrary points on
l. Find the locus of the centers of mass of triangles with vertices in the midpoints
of segments AA1, BB1 and CC1.

14.6. On edges AB, BC, CD and DA of tetrahedron ABCD points K, L,
M and N , respectively, are taken so that AK : KB = DM : MC = p and
BL : LC = AN : ND = q. Prove that segments KM and LN intersect at one
point, O, such that KO : OM = q and NO : OL = p.

14.7. On the extensions of the heights of tetrahedron ABCD beyond the vertices
segments AA1, BB1, CC1 and DD1 whose lengths are inverse proportional to the
heights are depicted. Prove that the centers of mass of tetrahedrons ABCD and
A1B1C1D1 coincide.

14.8. Two planes intersect the lateral edges of a regular n-gonal prism at points
A1, . . . , An and B1, . . . , Bn, respectively, and these planes do not have common
points inside the prism. Let M and N be the centers of mass of polygons A1 . . . An

and B1 . . . Bn.
a) Prove that the sum of lengths of segments A1B1, . . . , AnBn is equal to nMN .
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b) Prove that the volume of the part of the prism confined between these planes
is equal to sMN , where s is the area of the base of the prism.

§2. The moment of inertia

The quantity IM = m1MX2
1 + · · · + mnMX2

n is called the moment of inertia
relative point M of the system of points X1, . . . , Xn with masses m1, . . . , mn

respectively.
14.9. Let O be the center of mass of a system of points whose total mass is

equal to m. Prove that the moments of inertia of this system relative point O and
relative an arbitrary point X are related by the formula

IX = IO + m×XO2.

14.10. a) Prove that the moment of inertia with respect to the center of mass of
a system of points of unit mass each is equal to 1

n

∑
i<j a2

ij , where n is the number
of points and aij is the distance between the i-th and j-th points.

b) Prove that the moment of inertia with respect to the center of mass of the sys-
tem of points whose masses are equal to m1, . . . , mn is equal to 1

m

∑
i<j mimja

2
ij ,

where m = m1 + · · ·+ mn and aij is the distance between the i-th and j-th points.
14.11. Prove that the sum of squared lengths of a tetrahedron’s medians is

equal to 4
9 of the sum of squared lengths of its edges.

14.12. Unit masses are placed at the vertices of a tetrahedron. Prove that the
moment of inertia of this system relative to the center of mass is equal to the sum
of squared distances between the midpoints of the opposite edges of tetrahedron.

14.13. Triangle ABC is given. Find the locus of points X in space such that
XA2 + XB2 = XC2.

14.14. Two triangles, an equilateral one with side a and an isosceles right one
with legs equal to b are placed in space so that their centers of mass coincide. Find
the sum of squared distances from all the vertices of one of the triangles to all the
vertices of another triangle.

14.15. Inside a sphere of radius R, n points are fixed. Prove that the sum of
the squared pairwise distances between these points does not exceed n2R2.

14.16. Points A1, . . . , An lie on one sphere and M is their center of mass. Lines
MA1, . . . , MAn intersect this sphere at points B1, . . . , Bn (distinct from A1, . . . ,
An). Prove that

MA1 + · · ·+ MAn ≤ MB1 + · · ·+ MBn.

§3. Barycentric coordinates

Tetrahedron A1A2A3A4 is given in space. If point X is the center of mass of
the vertices of this tetrahedron whose masses are m1, m2, m3 and m4, respectively,
then the quadruple (m1,m2,m3,m4) is called the barycentric coordinates of point
X relative the tetrahedron A1A2A3A4.

14.17. Tetrahedron A1A2A3A4 in space is given.
a) Prove that any point X has certain barycentric coordinates relative the given

tetrahedron.
b) Prove that the barycentric coordinates of point X are uniquely defined if

m1 + m2 + m3 + m4 = 1.
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14.18. In barycentric coordinates relative to tetrahedron A1A2A3A4 find the
equation of: a) line A1A2; b) plane A1A2A3; c) the plane that passes through A3A4

parallel to A1A2.
14.19. Prove that if points whose barycentric coordinates are (xi) and (yi)

belong to some plane then the point with barycentric coordinates (xi + yi) also
belongs to the same plane.

14.20. Let Sa, Sb, Sc and Sd be the areas of faces BCD, ACD, ABD and
ABC, respectively, of tetrahedron ABCD. Prove that in the system of barycentric
coordinates relative this tetrahedron ABCD :

a) the coordinates of the center of the inscribed sphere are (Sa, Sb, Sc, Sd);
b) the coordinates of the center of the escribed sphere tangent to face ABC are

(Sa, Sb, Sc,−Sd).
14.21. Find the equation of the sphere inscribed in tetrahedron A1A2A3A4 in

barycentric coordinates related to it.
14.22. a) Prove that if the centers I1, I2, I3 and I4 of escribed spheres tangent

to the faces of a tetrahedron lie on its circumscribed sphere, then this tetrahedron
is an equifaced one.

b) Prove that the converse is also true: for an equifaced tetrahedron points I1,
I2, I3 and I4 lie on the circumscribed sphere.

Solutions

14.1. Let X and O be arbitrary points in plane. Then

m1{OX1}+ · · ·+mn{OXn} = (m1+ · · ·+mn){OX}+m1{XX1}+ · · ·+mn{XXn}

and, therefore, point O is the center of mass of the given system of points if and
only if

(m1 + · · ·+ mn){OX}+ m1{XX1}+ . . . mn{XXn} = {0},
i.e.,

{XO} =
1

m1 + · · ·+ mn
· (m1{XX1}+ · · ·+ mn{XXn}).

This argument implies the solution of both headings of the problem.
14.2. Let Z be an arbitrary point, a = a1 + · · ·+an and b = b1 + · · ·+ bm. Then

{ZX} = 1
a (a1{ZX1}+ · · ·+an{ZXn}) and {ZY } = 1

b (b1{ZY1}+ · · ·+ bm{ZYm}).
If O is the center of mass of the two points - X with mass a and Y with mass b -
then

{ZO} =
1

a + b
(a{ZX}+ b{ZY }) =

1
a + b

(a1{ZX1}+ · · ·+ an{ZXn}+ b1{ZY1}+ · · ·+ bm{ZYm}),

i.e., O is the center of mass of the system of points X1, . . . , Xn, Y1, . . . , Ym with
masses a1, . . . , an, b1, . . . , bm, respectively.

14.3. Let us place unit masses in the vertices of the tetrahedron. The center of
mass of these points lies on the segment that connects the vertex of the tetrahedron
with the center of mass of the vertices of the opposite face and divides this segment
in the ratio 3 : 1 counting from the vertex. Therefore, all the medians of the
tetrahedrons pass through its center of mass.
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The center of mass of the tetrahedron also lies on the segment that connects the
centers of mass of opposite edges (i.e., their midpoints) and divides this segment in
halves.

14.4. Let us place unit masses at points A1, B and D. Let O be the center of
mass of this system. Then

3{AO} = {AA1}+ {AB}+ {AD} = {AA1}+ {A1B1}+ {B1C1} = {AC1},

i.e., point O lies on diagonal AC1. On the other hand, the center of mass of
points A1, B and D lies in plane A1BD, hence, O = M and, therefore, 3{AM} =
3{AO} = {AC1}.

14.5. Let us place unit masses at points A, B, C, A1, B1 and C1. On the one
hand, the center of mass of this system coincides with the center of mass of the
triangle with vertices at the midpoints of segments AA1, BB1 and CC1.

On the other hand, it coincides with the midpoint of the segment that connects
the center of mass X of points A1, B1 and C1 with the center of mass M of triangle
ABC. Point M is fixed and point X moves along line l. Therefore, the midpoint
of segment MX lies on the line homothetic to line l with center M and coefficient
0.5.

14.6. Let us place points of mass 1, p, pq and q at points A, B, C and D,
respectively, and consider the center of mass P of this system of points. Since K is
the center of mass of points A and B, M is the center of mass of points C and D,
it follows that point P lies on segment KM , where

KP : PM = (pq + q) : (1 + p) = q.

Similarly, point P lies on segment LN and NP : PL = p.
14.7. Let M be the center of mass of tetrahedron ABCD. Then

{MA1}+ {MB1}+ {MC1}+ {MD1} =
({MA}+ {MB}+ {MC}+ {MD}) + ({AA1}+

{BB1}+ {CC1}+ {DD1}) =
{AA1}+ {BB1}+ {CC1}+ {DD1}.

Vectors {AA1}, {BB1}, {CC1} and {DD1} are perpendicular to the tetrahedron’s
faces and their lengths are proportional to the areas of the faces (this follows from
the fact that the areas of the tetrahedron’s faces are inverse proportional to the
lengths of the heights dropped onto them). Therefore, the sum of these vectors is
equal to zero (cf. Problem 7.19), hence, M is the center of mass of tetrahedron
A1B1C1D1.

14.8. a) Since

{MA1}+ · · ·+ {MAn} = {MB1}+ · · ·+ {MBn} = {0},

we see that by adding equalities {MAi}+ {AiBi}+ {BiN} = {MN} for all i = 1,
. . . , n we get {A1B1} + · · · + {AnBn} = n{MN}. Therefore, segment MN is
parallel to the edges of the prism and {A1B1}+ · · ·+ {AnBn} = nMN .

Notice also that if instead of polygon B1 . . . Bn we take one of the bases of the
prism, we see that line MN passes through the centers of the prism’s bases.
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b) Let us divide the base of the prism into triangles by connecting its center
with the vertices; the areas of these triangles are equal. Considering the triangular
prisms whose bases are the obtained triangles we can divide the given part of the
prism into the polyhedrons with triangular bases and parallel lateral edges. By
Problem 3.24 the volumes of these polyhedrons are equal to s(A1B1+A2B2+MN)

3n ,
. . . , s(AnBn+A1B1+MN)

3n . Therefore, the volume of the whole part of the prism
confined between the given planes is equal to

s(2(A1B1 + · · ·+ AnBn) + nMN)
3n

.

It remains to notice that

A1B1 + · · ·+ AnBn = nMN.

14.9. Let us enumerate the points of the given system. Let xi be the vector with
the beginning at O and the endpoint at the i-th point; let the mass of this point be
equal to mi. Then

∑
mixi = 0. Further, let a = {XO}. Then IO =

∑
mix

2
i , and

IX =
∑

mi(xi + a)2 =
∑

mix
2
i + 2(

∑
mixi,a) +

∑
mia

2 =
= IO + ma2.

14.10. a) Let xi be the vector with the beginning at the center of mass, O, and
the endpoint at the i-th point. Then

∑

i,j

(xi − xj)2 =
∑

i,j

(x2
i + x2

j )− 2
∑

i,j

(xi,xj),

where sum runs over all possible pairs of the point’s numbers. Clearly,

∑

i,j

(x2
i + x2

j ) = 2n
∑

i

x2
i = 2nIO

∑

i,j

(xi,xj) =
∑

i

(xi,
∑

j

xj) = 0.

Therefore,

2nIO =
∑

i,j

(xi − xj)2 = 2
∑

i<j

a2
ij .

b) Let xi be the vector with the beginning at the center of mass, O and the
endpoint at the i-th point. Then

∑

i,j

mimj(xi − xj)2 =
∑

i,j

mimj(x2
i + x2

j )− 2
∑

i,j

mimj(xi,xj).

Clearly,

∑

i,j

mimj(x2
i + x2

j ) =

∑

i

mi

∑

j

(mjx
2
i + mjx

2
j ) =

∑

i

mi(mx2
i + IO) = 2mIO
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and ∑

i,j

mimj(xi,xj) =
∑

mi(xi,
∑

j

mjxj) = 0.

Π
Therefore,

2mIO =
∑

i,j

mimj(xi − xj)2 = 2
∑

i<j

mimja
2
ij .

14.11. Let us place unit masses at the vertices of the tetrahedron. Since their
center of mass — the intersection point of the tetrahedron’s medians — divides
each median in ratio 3 : 1, the moment of inertia of the tetrahedron relative the
center of mass is equal to

(
3
4
ma)2 + · · ·+ (

3
4
md)2 =

9
16

(m2
a + m2

b + m2
c + m2

d).

On the other hand, by Problem 14.10 it is equal to the sum of squares of the length
of the tetrahedron’s edges divided by 4.

14.12. The center of mass O of tetrahedron ABCD is the intersection point of
segments that connect the midpoints of the opposite edges of the tetrahedron and
point O divides each of these segments in halves (Problem 14.3 b)). If K is the
midpoint of edge AB, then

AO2 + BO2 = 2OK2 +
AB2

2
.

Let us write such equalities for all edges of the tetrahedron and take their sum.
Since from each vertex 3 edges exit, we get 3IO in the left-hand side. If L is the
midpoint of segment CD, then 2OK2 + 2OL2 = KL2. Moreover, as follows from
Problem 14.10 a), the sum of the squared lengths of the terahedron’s edges is equal
to 4IO. Therefore, in the right-hand side of the equality we get d + 2IO, where d
is the sum of the squared distances between the midpoints of the opposite edges of
the tetrahedron. After simplification we get the desired statement.

14.13. Place unit masses at vertices A and B and mass −1 at vertex C. The
center of mass, M , of this system of points is a vertex of parallelogram ACBM .
By the hypothesis

IX = XA2 + XB2 −XC2 = 0

and, since
IX = (1 + 1− 1)MX2 + IM

(Problem 14.9), it follows that

MX2 = −IM = a2 + b2 − c2,

where a, b and c are the lengths of the sides of triangle ABC (Problem 14.10 b)).
Thus, if ∠C < 90◦, then the locus we seek for is the sphere of radius

√
a2 + b2 − c2

centered at M .
14.14. If M is the center of mass of triangle ABC, then

IM =
AB2 + BC2 + AC2

3
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(cf. Problem 14.10 a)) and, therefore, for any point X we have

XA2 + XB2 + XC2 = IX = 3XM2 + IM = 3XM2 +
AB2 + BC2 + AC2

3
.

If ABC is the given right triangle, A1B1C1 is the given equilateral triangle and M
is their common center of mass, then

A1A
2 + A1B

2 + A1C
2 = 3A1M

2 +
4b2

3
= a2 +

4b2

3
.

Write similar equalities for points B1 and C1 and take their sum. We deduce that
the desired sum of the squares is equal to 3a2 + 4b2.

14.15. Let us place unit masses in the given points. As follows from the result
of Problem 14.10 a)), the sum of squared pairwise distances between these points
is equal to nI, where I is the moment of inertia of the system of points relative its
center of mass. Now, let us consider the moment of inertia of the system relative
the center O of the sphere.

On the one hand, I ≤ IO (cf. Problem 14.9). On the other hand, since the
distance from point O to any of the given points does not exceed R, we have
IO ≤ nR2. Therefore, nI ≤ n2R2 and the equality is only attained if I = IO (i.e.,
the center of mass coincides with the center of the sphere) and IO = nR2 (i.e., all
the points lie on the surface of the given sphere).

14.16. Let O be the center of the given sphere. If chord AB passes through
point M , then AM ·BM = R2− d2, where d = MO. Denote by IX the moment of
inertia of the system of points A1, . . . , An relative point X. Then IO = IM + nd2

by Problem 14.9. On the other hand, since OAi = R, then IO = nR2. Therefore,

AiM ·BiM = R2 − d2 =
1
n

(A1M
2 + · · ·+ AnM2).

Thus, if we set ai = AiM , then the required inequality takes the form

a1 + · · ·+ an ≤ 1
n

(a2
1 + · · ·+ a2

n)(
1
a1

+ · · ·+ 1
an

).

To prove this inequality we should make use of the inequality

x + y ≤ x2

y
+

y2

x

which is obtained from the inequality xy ≤ x2 − xy + y2 by multiplying both of its
sides by x+y

xy .
14.17. Denote: e1 = {A4A1}, e2 = {A4A2}, e3 = {A4A3} and x = {XA4}.

Point X is the center of mass of the vertices of tetrahedron A1A2A3A4 with masses
m1, m2, m3 and m4, respectively, if and only if

m1(x + e1) + m2(x + e2) + m3(x + e3) + m4x = 0,

i.e.,
mx = −(m1e1 + m2e2 + m3e3), where m = m1 + m2 + m3 + m4.
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Let us assume that m = 1. Any vector x can be represented in the form x =
−m1e1 −m2e2 −m3e3, where numbers m1, m2 and m3 are uniquely defined. The
number m4 is found from the formula m4 = 1−m1 −m2 −m3.

14.18. The point whose barycentric coordinates are (x1, x2, x3, x4) lies:
a) on line A1A2 if x3 = x4 = 0;
b) in plane A1A2A3 if x4 = 0.
c) Let us make use of notations of Problem 14.17. Point X lies in the indicated

plane if x = λ(e1 − e2) + µe3, i.e., x1 = −x2.
14.19. The point whose barycentric coordinates are (xi + yi) is the center of

mass of points whose barycentric coordinates are (xi) and (yi). It is also clear that
the center of mass of two points lies on the line that passes through them.

14.20. a) The center of the inscribed sphere is the intersection point of the
bisector planes of the dihedral angles of the tetrahedron. Let M be the intersection
point of edge AB with the bisector plane of the dihedral angle at edge CD. Then
AM : NB = Sb : Sa (Problem 3.32) and, therefore, the barycentric coordinates of
point M are equal to (Sa, Sb, 0, 0). The bisector plane of the dihedral angle at edge
CD passes through the point with coordinates (Sa, Sb, 0, 0) and through line CD the
coordinates of whose points are (0, 0, x, y). Therefore, this plane consists of points
whose coordinates are (Sa, Sb, x, y), cf. Problem 14.19. Thus, point (Sa, Sb, Sc, Sd)
belongs to the bisector plane of the dihedral angle at edge CD. We similarly prove
that it belongs to the other bisector plane.

b) The center of the escribed sphere tangent to face ABC is the intersection
point of the bisector planes of the dihedral angles at edges AD, BD, CD and the
bisector planes of the exterior dihedral angles at edges AB, BC, CA. Let M be
the intersection point of the extension of edge CD with the bisector plane of the
exterior angle at edge AB (if this bisector plane is parallel to edge CD, then we
have to make use of the result of Problem 14.18 c)). The same arguments as in the
solution of Problem 3.32 show that CM : MD = Sd : Sc. The subsequent part of
the proof is the same as that of the preceding problem.

14.21. Let X be an arbitrary point, O the center of the sphere circumscribed
about the given tetrahedron, ei = {OAi} and a = {XO}. If the barycentric
coordinates of point X are (x1, x2, x3, x4), then

∑
xi(a + ei) =

∑
xi{XAi} = 0,

because X is the center of mass of points A1, . . . , A4 whose masses are x1, . . . , x4,
respectively. Hence, (

∑
xi)a = −∑

xiei. Point X lies on the sphere circumscribed
about the tetrahedron if and only if |a| = XO = R, where R is the radius of
the sphere. Therefore, the circumscribed sphere of the tetrahedron is given in the
barycentric coordinates by the equation

R2(
∑

xi)2 = (
∑

xiei)2,

i.e.,

R2
∑

x2
i + 2R2

∑

i<j

xixj = R2
∑

x2
i + 2

∑

i<j

xixj(ei, ej)

because |ei| = R. This equation can be rewritten in the form
∑

i<j

xixj(R2 − (ei, ej)) = 0.
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Now, notice that 2(R2 − (ei, ej)) = a2
ij , where aij is the length of edge AiAj .

Indeed,

a2
ij = |ei − ej |2 = |ei|2 + |ej |2 − 2(ei, ej) = 2(R2 − (ei, ej)).

As a result we see that the sphere circumscribed about tetrahedron A1A2A3A4 is
given in barycentric coordinates by equation

∑
i<j xixjaij = 0, where aij is the

length of edge AiAj .
14.22. a) Let S1, S2, S3 and S4 be areas of faces A2A3A4, A1A3A4, A1A2A4

and A1A2A3, respectively. The barycentric coordinates of points I1, I2, I3 and
I4 are (−S1, S2, S3, S4), (S1,−S2, S3, S4), (S1, S2,−S3, S4) and (S1, S2, S3,−S4)
(Problem 14.20 b)) and the equation of the circumscribed sphere of the tetrahedron
in barycentric coordinates is

∑
i<j a2

ijxixj = 0, where aij is the length of edge AiAj

(Problem 14.21).
Let us express the conditions of membership of points I1 and I2 to the circum-

scribed sphere (for simplicity we have denoted a2
ijSiSj by yij):

y12 + y13 + y14 = y23 + y34 + y24;
y12 + y23 + y24 = y13 + y34 + y14.

Adding up these equalities we get y12 = y34. Similarly, adding up such equalities
for points Ii and Ij we get yij = ykl, where the set of numbers {i, j, k, l} coincides
with a permutation of the set {1, 2, 3, 4}.

By multiplying the equalities y13 = y23 and y14 = y24 we get y13y14 = y23y24,
i.e.,

S1S3a
2
13S1S4a

2
14 = S2S3a

2
23S2S4a

2
24.

Since all the numbers Si and aij are positive, it follows that S1a13a14 = S2a23a24,
i.e., a23a24

S1
= a13a14

S2
. By multiplying both sides of the equality by a34 we get

a23a24a34

S1
=

a13a14a34

S2
.

Each side of this equality is the ratio of the product of the length of the triangle’s
sides to its area. It is easy to verify that such a ratio is equal to 4 times the radius of
the circle circumscribed about the triangle. Indeed, S = 1

2ab sin γ = abc
4R . Therefore,

the radii of the circles circumscribed about faces A2A3A4 and A1A3A4 are equal.
We similarly prove that the radii of all the faces of the tetrahedron are equal.

Now, it remains to make use of the result of Problem 6.25 c).
b) Let us make use of the notations of the preceding problem. For an equifaced

tetrahedron S1 = S2 = S3 = S4. Therefore, the fact that point I1 belongs to the
circumscribed sphere of the tetrahedron take the form

a12 + a13 + a14 = a23 + a34 + a24.

This equality follows from the fact that a12 = a34, a13 = a24 and a14 = a23. We
similarly verify that points I2, I3 and I4 belong to the circumscribed sphere.

Remark. In the solution of Problem 6.32 the statement of heading b) is proved
by another method.
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CHAPTER 15. MISCELLANEOUS PROBLEMS

§1. Examples and counterexamples

15.1. a) Does there exist a quadrilateral pyramid two nonadjacent faces of which
are perpendicular to the plane of the base?

b) Does there exist a hexagonal pyramid whose three (it is immaterial whether
they are adjacent or not) lateral faces are perpendicular to the plane of the base?

15.2. Vertex E of tetrahedron ABCD lies inside tetrahedron ABCD. Is it
necessary that the sum of the lengths of edges of the outer tetrahedron is greater
than the sum of the lengths of edges of the inner tetrahedron?

15.3. Does there exist a tetrahedron all faces of which are acute triangles?
15.4. Does there exist a tetrahedron the basis of all whose heights lie outside

the corresponding faces?
15.5. In pyramid SABC edge SC is perpendicular to the base. Can angles

ASB and ACB be equal?
15.6. Is it possible to intersect an arbitrary trihedral angle with a plane so that

the section is an equilateral triangle?
15.7. Find the plane angles at the vertices of a trihedral angle if it is known

that any section of the latter is an acute triangle.
15.8. Is it possible to place 6 pairwise nonparallel lines in space so that all the

pairwise angles between them are equal?
15.9. Is it necessary that a polyhedron all whose faces are equal squares must

be a cube?
15.10. All the edges of a polyhedron are equal and tangent to one sphere. Is it

necessary that its vertices lie on one sphere?
15.11. Can a finite set of points in space not in one plane possess the following

property: for any two points A and B from this set there are two more points C
and D from this set such that AB ‖ CD and these lines do not coincide?

15.12. Is it possible to place 8 nonintersecting tetrahedrons so that any two of
them touch each other along a piece of surface with nonzero area?

§2. Integer lattices

The set of points in space all the three coordinates of which are integers is called
an integer lattice and the points themselves the nodes of the integer lattice. The
planes parallel to the coordinate planes and passing through the nodes of an integer
lattice divide the space into unit cubes.

15.13. Nine vertices of a convex polyhedron lie at nodes of an integer lattice.
Prove that either inside it or on its lattice there is one more node of an integer
lattice.

15.14. a) For what n there exists a regular n-gon with vertices in nodes of a
(spatial) integer lattice?

b) What regular polyhedrons can be placed so that their vertices lie in nodes of
an integer lattice?
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15.15. Is it possible to draw a finite number of planes in space so that at least
one of these planes would intersect each small cube of the integer lattice?

15.16. Prove that among parallelograms whose vertices are at integer points of
the plane ax + by + cz = 0, where a, b and c are integers, the least area S is equal
to the least length l of the vector with integer coordinates perpendicular to this
plane.

15.17. Vertices A1, B, C1 and D of cube ABCDA1B1C1D1 lie in nodes of an
integer lattice. Prove that its other vertices also lie in nodes of an integer lattice.

15.18. a) Given a parallelepiped (not necessarily a rectangular one) with vertices
in nodes of an integer lattice such that a nodes of the lattice are inside it, b nodes
are inside its faces and c nodes are inside its edges. Prove that its volume is equal
to 1 + a + 1

2b + 1
4c.

b) Prove that the volume of the tetrahedron whose only integer points are its
vertices can be however great.

§3. Cuttings. Partitions. Colourings

15.19. a) Cut a tetrahedron with edge 2a into tetrahedrons and octahedrons
with edge a.

b) Cut an octahedron with edge 2a into tetrahedrons and octahedrons with edge
a.

15.20. Prove that the space can be filled in with regular tetrahedrons and
octahedrons without gaps.

15.21. Cut a cube into three equal pyramids.
15.22. Into what minimal number of tetrahedrons can a cube be cut?
15.23. Prove that any tetrahedron can be cut by a plane into two parts so that

one can compose the same tetrahedron from them by connecting them not as they
were connected before but in a new way.

15.24. Prove that any polyhedron can be cut into convex polyhedrons.
15.25. a) Prove that any convex polyhedron can be cut into tetrahedrons.
b) Prove that any convex polyhedron can be cut into tetrahedrons whose vertices

lie in vertices of a polyhedron.

* * *

15.26. Into how many parts is the space divided by the planes of faces of: a) a
cube; b) a tetrahedron?

15.27. Into what greatest number of parts can the sphere be divided by n
circles?

15.28. Given n planes in space so that any three of them have exactly one
common point and no four of them pass through one point, prove that they divide
the space into 1

6 (n2 + 5n + 6) parts.
15.29. Given n (n ≥ 5) planes in space so that any three of them have exactly

one common point and no four of them pass through one point, prove that among
the parts into which these planes divide the space there are not less than 1

4 (2n− 3)
tetrahedrons.

* * *

15.30. A stone is of the shape of a regular tetrahedron. This stone is rolled
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over the plane by rotating about its edges. After several such rotations the stone
returns to the initial position. Can its faces change places?

15.31. A rectangular parallelepiped of size 2l × 2m× 2n is cut into unit cubes
and each of these cubes is painted one of 8 colours so that any two cubes with at
least one common vertex are painted different colours. Prove that all the corner
cubes are differently painted.

§4. Miscellaneous problems

15.32. A plane intersects the lower base of a cylinder along a diameter and has
only one common point with the cylinder’s upper base. Prove that the area of the
cut off part of the lateral surface of the cylinder is equal to the area of its axial
section.

15.33. Given 3(2n − 1) points inside a convex polyhedron of volume V . Prove
that the polyhedron contains another polyhedron of volume V

2n whose internal part
contains none of the given points.

15.34. Given 4 points in space not in one plane. How many distinct paral-
lelepipeds for which these points are vertices are there?

Solutions

15.1. Yes, such pyramids exist. For their bases we can take, for instance, a
quadrilateral and a nonconvex hexagon plotted on Fig. 106 the vertices of these
pyramids on the perpendiculars raised at points P and Q, respectively.

Figure 106 (Sol. 15.1)

15.2. No, not necessarily. Let us consider an isosceles triangle ABC whose
base AC is much shorter than its lateral side. Let us place vertex D close to the
midpoint of side AC and vertex E inside tetrahedron ABCD close to vertex B.
The perimeter of the outer tetrahedron can be made however close to 3a, where a
is the length of the lateral side of triangle ABC and the perimeter of the inner one
however close to 4a.

15.3. Yes, there is. Let angle C of triangle ABC be obtuse, point D lie on the
height dropped from vertex C. By slightly raising point D over the plane ABC we
get the desired tetrahedron.

15.4. Yes, it exists. A tetrahedron two opposite dihedral angles of which are
obtuse possesses this property. To construct such a tetrahedron we can, for example,
take two diagonals of a square and slightly lift one of them over the other.

Remark. The base of the shortest height of any tetrahedron lies inside the
triangle whose sides pass through vertices of the opposite face parallelly with its
edges (cf. Problem 12.16).
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15.5. Yes, they can. Let points C and S lie on one arc of a circle that passes
through A and B so that SC ⊥ AB and point C is closer to line AB than point S
is (see Fig. 107). Then we can rotate triangle ABS about AB so that segment SC
becomes perpendicular to plane ABC.

Figure 107 (Sol. 15.5)

15.6. No, not for every angle. Let us consider a trihedral angle SABC for which
∠BSC < 60◦ and edge AS is perpendicular to face SBC. Suppose that its section
ABC is an equilateral triangle. In right triangles ABS and ACS the hypothenuses
are equal because SB = SC. In isosceles triangle SBC, the angle at vertex S is
the smallest, hence, BC < SB. It is also clear that SB < AB and, therefore,
BC < AB. Contradiction.

15.7. First, let us prove that any section of the trihedral angle with right planar
angles is an acute triangle. Indeed, let the intersecting plane cut off the edges
segments of length a, b and c. Then the squares of the lengths of the sides of the
section are equal to a2 + b2, b2 + c2 and a2 + c2. The sum of squares of any two
sides is greater than the square of the third one and, therefore, the triangle is an
acute one.

Now, let us prove that if all the planar angles of the trihedral angle are right
ones then it has a section: an acute triangle. If the trihedral angle has an acute
plane angle, then on the leg of this trihedral angle draw equal segments SA and
SB; if point C on the third edge is taken sufficiently close to vertex S, then triangle
ABC is an acute one.

If the trihedral angle has an acute plane angle, then we can select points A and
B on the legs of this trihedral angle , so that the angle ∠SAB is an obtuse one;
and if point C on the third leg is taken sufficiently close to vertex S, then triangle
ABC is an acute one.

15.8. Yes, it is possible. Let us draw lines that connect the center of the
icosahedron with its vertices (cf. Problem 9.4). It is easy to verify that any two
such lines pass through two points that are the endpoints of one edge.

15.9. No, not necessarily. Let us take a cube and glue equal cubes to each of
its faces. All the faces of the obtained (nonconvex) polyhedron are equal squares.

15.10. No, not necessarily. On the faces of a cube as on bases, construct regular
quadrangular pyramids with dihedral angles at the bases equal to 45◦. As a result
we get a 12-hedron with 14 vertices of which 8 are vertices of the cube and 6 are
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vertices of the constructed pyramids; the edges of the cube are diagonals of its faces
and, therefore, cannot serve as its edges.

All the edges of the constructed polyhedron are equal and equidistant from the
center of the cube. All the vertices of the polyhedron cannot belong to one sphere
since the distance from the vertices of the cube to the center is equal to

√
3

2 a, where
a is the edge of the cube whereas the distance of the other vertices from the center
of the cube is equal to a.

15.11. Yes, it can. It is easy to verify that the vertices of a regular hexagon
possess the desired property. Now, consider two regular hexagons with a common
center O but lying in distinct planes. If A and B are vertices of distinct hexagons,
then we can take for C and D points symmetric to A and B, respectively, through
O.

Figure 108 (Sol. 15.12)

15.12. Yes, this is possible. On Fig. 108 the solid line plots 4 triangles of which
one lies inside other three. Let us consider four triangular pyramids with a common
vertex whose bases are these triangles. We similarly construct four more triangular
pyramids with a common vertex (that lie on the other side of the plot’s plane)
whose bases are the triangles plotted by dashed lines. The obtained 8 tetrahedrons
possess the required property.

15.13. Each of the three coordinates of a node of an integer lattice can be either
even or odd; altogether 23 = 8 distinct possibilities. Therefore, among nine vertices
of a polyhedron there are two vertices with coordinates of the same parity. The
midpoint of the segment that connects these vertices has integer coordinates.

15.14. a) First, let us prove that for n = 3, 4, 6 there exists a regular n-gon
with vertices in nodes of an integer lattice. Let us consider cube ABCDA1B1C1D1

the coordinates of whose vertices are equal to (±1,±1,±1). Then the midpoints of
edges AB, BC, CC1, C1D1, D1A1 and A1A are the vertices of a regular hexagon
and all of them have integer coordinates (Fig. 109); the midpoints of edges AB,
CC1 and D1A1 are the vertices of an equilateral triangle; it is also clear that ABCD
is a square whose vertices have integer coordinates.

Now, let us prove that for n 6= 3, 4, 6 there is no regular n-gon with vertices in
nodes of an integer lattice. Suppose, contrarywise that for some n 6= 3, 4, 6 such
an n-gon exists. Among all the n-gons with vertices in nodes of the lattice we can
select one with the shortest side.
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Figure 109 (Sol. 15.14)

To prove it, let us verify that the length of a side of such an n-gon can only
take finitely many values smaller than the given one. It remains to notice that
the length of any segment with the endpoints in nodes of the lattice is equal to√

n2
1 + n2

2 + n2
3, where n1, n2 and n3 are integers.

Let A1A2 . . . An be the chosen n-gon with the shortest side. Let us consider a
regular n-gon B1 . . . Bn, where point Bi is obtained from point Ai by translation
by vector {Ai+1Ai+2}, i.e., {AiBi} = {Ai+1Ai+2}. Since the translation by vector
with integer coordinates sends a node of the lattice to a node of the lattice, Bi is a
node of the lattice.

In order to get a contradiction it remains to prove that the length of a side
of polygon B1 . . . Bn is strictly shorter than a side of polygon A1 . . . An (and is
not equal to zero). The proof of this is quite obvious; we only have to consider
separately two cases: n = 5 and n ≥ 7.

b) First, let us prove that a cube, a regular tetrahedron and an octahedron
can be placed in the desired way. To this end consider cube ABCDA1B1C1D1

the coordinates of whose vertices are (±1,±1,±1). Then AB1CD1 is the required
tetrahedron and the midpoints of the faces of the considered cube are vertices of
the required octahedron.

Now, let us prove that neither dodecahedron nor icosahedron can be placed in the
desired way. As follows from the preceding problem, there is no regular pentagon
with vertices in nodes of the lattice. It remains to verify that both dodecahedron
and icosahedron have a set of vertices that single out a regular pentagon.

For a dodecahedron these are vertices of any of the faces and for the icosahedron
these are vertices which are endpoints of the edges that go out of one of the vertex.

15.15. No, this is impossible. Let n planes be given in space. If a small cube of
the lattice intersects with a plane, then it lies entirely inside a band of width 2

√
3

consisting of all the points whose distance from the given plane is not greater than√
3 (
√

3 is the greatest distance between points of a small cube).
Let us consider a ball of radius R. If all the small cubes of the lattice having

a common point with this ball intersect with given planes then the slices of width
2
√

3 determined by given planes fill in the whole ball. The volume of the part
of each of such slice that lies inside the ball does not exceed 2

√
3πR2. Since the

volume of the ball does not exceed the sum of the volumes of the slices,

4πR3

3
≤ 2

√
3nπR2, i.e., R ≤ 3

√
3

2
n.
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Therefore, if R > 3
√

3
2 n, then n planes cannot intersect all the small cubes of the

lattice that have common points with a ball of radius R.
15.16. We can assume that numbers a, b and c are relatively prime, i.e., the

largest number that divides all of them is equal to 1. The coordinates of a vector
perpendicular to this plane are (λa, λb, λc). These coordinates are only integer
if λ is an integer and, therefore, l is the length of vector (a, b, c). If u and v are
vectors of the neighbouring sides of the parallelogram with vertices in integer points
of the given plane then their vector product is a vector with integer coefficients
perpendicular to the given plane and the length of this vector is equal to the area
of the considered parallelogram. Hence, S ≥ l.

Now, let us prove that S ≤ l. To this end it suffices to indicate integer vectors u
and v lying in the given plane the coordinates of their vector product being equal
to (a, b, c). Let d be the greatest common divisor of a and b; a′ = a

d and b′ = b
d ;

for u take vector (−b′, a′, 0). If v = (x, y, z), then |u,v| = (a′z, b′z,−a′x − b′y).
Therefore, for z we should take d and select numbers x and y so that ax+by+cz = 0,
i.e., −a′x− b′y = c.

It remains to prove that if p and q are relatively prime then there exist integers
x and y such that px + qy = 1. Then px′ + qy′ = c for x′ = cx and y′ = cy. We
may assume that p > q > 0. Let us successively perform division with a remainder:

p = qn0+r1, q = r1n1+r2, r1 = r2n2+r3, . . . , rk−1 = rknk+rk+1, rk = nk+1rk+1.

Since numbers p and q are relatively prime, q and r1 are relatively prime and,
therefore, r1 and r2 are relatively prime, etc. Hence, rk and rk+1 are relatively
prime, i.e., rk+1 = 1. Let us substitute the value of rk obtained from the formula
rk−2 = rk−1nk−1 + rk into rk−1 = rknk + 1. Then substitute the value of rk−1

obtained from the formula rk−3 = rk−2nk−2 + rk−1, etc. At each stage we get
a relation of the form xri + yri−1 = 1 and, therefore, at the end we will get the
desired relation.

15.17. Let (xi, yi, zi) be coordinates of the i-th vertex of regular tetrahedron
A1BC1D. The coordinates of its center which coincides with the center of the
cube are 1

4 (x1 + x2 + x3 + x4), etc. The first coordinate of the point symmetric to
(x1, y1, z1) throuhg the center of the cube is

x1 + x2 + x3 + x4

2
− x1 =

−x1 + x2 + x3 + x4

2
,

and the remaining ones are obtained in a similar fashion. The parity of the number
−x1 + x2 + x3 + x4 coincides with that of x1 + x2 + x3 + x4.

Thus we have to prove that numbers x1 + x2 + x3 + x4, etc., are even ones.
Let us assume that the origin lies in the fourth vertex of the tetrahedron, i.e.,
x4 = y4 = z4 = 0.

Let u, v, w be integers. It is easy to verify that if u2 + v2 + w2 is divisible by
4, then all the numbers u, v and w are even. Therefore, it suffices to verify that
u2 + v2 + w2, where

u = x1 + x2 + x3, v = y1 + y2 + y3 and w = z1 + z2 + z3

is an even number. Let a be the edge of the cube. Since x2
1 + y2

1 + z2
1 = 2a2 and

x1x2 +y1y2 +z1z2 = (
√

2a)2 cos 60◦ = a2, it follows that u2 +v2 +w2 = 6a2 +6a2 =
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12a2. The number a2 is an integer because it is the sum of squares of three integer
coordinates.

15.18. a) We can assume that one of the vertices of the given parallelepiped is
placed in the origin. Let us consider cube K1 the absolute values of the coordinate
of the cube’s points do not exceed an integer n. Let us divide the space into
parallelepipeds equal to the given one by drawing planes parallel to the faces of the
given cube.

The neighbouring parallelepipeds are obtained from each other after a translation
by an integer factor and, therefore, all these parallelepipeds have vertices with
integer coordinates. Let N be the total number of those of our parallelepipeds that
have common points with K1. All of them lie inside cube K2 the absolute values
of whose coordinates do not exceed n + d, where d is the greatest distance between
the vertices of the given parallelepiped.

Let us denote the volume of the given parallelepiped by V . Since the considered
N parallelepipeds contain K1 and are contained in K2, we deduce that (2n)3 ≤
NV ≤ (2n + 2d)3, i.e.,

(1)
(

1
2n + 2d

)3

≤ 1
NV

≤
(

1
2n

)3

.

For each of the considered N parallelepipeds let us write beside its integer points
the following numbers: beside any integer point we write number 1, beside any point
on the face we write number 1

2 , beside any point on an edge we write number 1
4

and beside each vertex we write number 1
8 (as a result, beside points that belong to

several parallelepipeds there will be several numbers written). It is easy to verify
that the sum of numbers written beside every integer point of K1 is equal to 1 (we
have to take into account that each point on a face belongs to two parallelepipeds
a point on an edge belongs to four parallelepipeds and a vertex belongs to eight
parallelepipeds); for integer points inside K2 such a sum does not exceed 1 and for
points outside K2 there are no such points. Therefore, the sum of all the considered
numbers is confined between the total number of integer points of cubes K1 and
K2.

On the other hand, it is equal to N(1 + a + 1
2b + 1

4c). Therefore,

(2) (2n + 1)3 ≤ N(1 + a +
b

2
+

c

4
) ≤ (2n + 2d + 1)3.

By multiplying (1) and (2) we see that

(
2n + 1
2n + 2d

)3

≤ 1 + a + b/2 + c/4
V

≤
(

2n + 2d + 1
2n

)3

for any positive integer n. Since both the upper and the lower bounds tend to 1 as
n tends to infinity,

1 + a +
b

2
+

c

4
= V.

b) Let us consider rectangular parallelepiped ABCDA1B1C1D1 whose vertices
have integer coordinates, edges are parallel to coordinate axes and the lengths of
the edges are equal to 1, 1 and n. Only the vertices are integer points of tetrahedron
A1BC1D and the volume of this tetrahedron is equal to 1

3n.
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15.19. a) The midpoints of edges of the tetrahedron with edge 2a are vertices
of an octahedron with edge a. If we cut off this octahedron from the tetrahedron,
then there remain 4 tetrahedrons with edge a each.

b) From an octahedron with edge 2a we cut off 6 octahedrons with edge a one of
the vertices of the cut-off octahedrons being a vertex of the initial octahedron, then
there remain 8 tetrahedrons whose bases are triangles formed by the midpoints of
the edges of the faces.

15.20. Let us take a regular tetrahedron with edge a and draw planes of its
faces and also all the planes parallel to them and distant from them at distance nh,
where h is the height of the tetrahedron. Let us prove that these planes divide the
space into tetrahedrons and octahedrons with edge a.

Each plane of the tetrahedron’s face is divided into equilateral triangles with
edge a and there are two types of such triangles: we can identify the triangles of
one type with the face of the initial tetrahedron after a translation and we cannot
do this with triangles of the other type (see Fig. 110 a)).

Let us prove that any of the considered planes is cut by the remaining planes into
equilateral triangles. To this end, it suffices to observe that if the distance of this
plane from the plane of a face of the initial tetrahedron is equal to nh, then there
exists a regular tetrahedron with edge (n + 1)a such that the initial tetrahedron
sits at one of the vertices of this larger tetrahedron and our plane is the plane of a
face of the tetrahedron that sits at another vertex (see Fig. 110 b)).

Figure 110 (Sol. 15.20)

The translation that sends a vertex of one of these tetrahedrons into a vertex
of another one sends the considered system of planes into itself. Any face of any
polyhedron into which the space is divided is one of the triangles into which the
planes are cut, therefore after one more parallel translation we can either make
coincide with the face of the initial tetrahedron or identify a pair of their edges (we
assume that the tetrahedron and the polyhedron have a common plane of a face
and are situated on one side of it). (????????????)

In the first case the polyhedron is a regular tetrahedron and in the second case
it is a regular octahedron (cf. the solution of Problem 15.19 a)).

15.21. For the common vertex of these pyramids take one of the vertices of the
cube and for bases three nonadjacent to it faces of the cube.

15.22. If we cut off tetrahedron A′BC ′D from cube ABCDA′B′C ′D′, then the
remaining part of the cube splits into 4 tetrahedrons, i.e., a cube can be cut into 5
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tetrahedrons.
Let us prove that it is impossible to cut a cube into a lesser number of tetra-

hedrons. Face ABCD cannot be a face of a tetrahedron into which the cube is
cut because at least two tetrahedrons are adjacent to it. Let us consider all the
tetrahedrons adjacent to face ABCD.

Their heights dropped to this face do not exceed a, where a is the edge of
the cube, and the sum of the areas of their faces that lie on ABCD is equal to
a2. Therefore, the sum of their volumes does not exceed 1

3a3. Since the faces of
one tetrahedron cannot be situated on the opposite faces of the cube, at least 4
tetrahedrons are adjacent to faces ABCD and A′B′C ′D′, so that the sum of their
volumes does not exceed 2

3a3 < a3. Therefore, there is at least one more tetrahedron
in the partition.

15.23. The sum of angles of each of the four faces of a tetrahedron is equal to
180◦ and, therefore, the sum of all the plane angles of a tetrahedron is equal to
4 · 180◦. It follows that the sum of the plane angles at one of the four vertices of
the tetrahedron does not exceed 180◦ and, therefore, the sum of two plane angles
at it is less than 180◦.

Let, for definiteness, the sum of two plane angles at vertex A of tetrahedron
ABCD be less than 180◦. On edge AC, take point L and construct in plane ABC
angle ∠ALK equal to angle ∠CAD. Since

∠KAL + ∠KLA = ∠BAC + ∠CAD < 180◦,

rays LK and AB intersect and, therefore, we may assume that point K lies on ray
AB.

We similarly construct point M on ray AD so that ∠ALM = ∠BAC. If point
L is sufficiently close to vertex A, points K and M lie on edges AB and AD,
respectively. Let us show that plane KLM cuts the tetrahedron in the required
way. Indeed, 4KAL = 4MLA and, therefore, there exists a movement of the
space that sends 4KAL to 4MLA. This movement sends tetrahedron AKLM
into itself.

15.24. Let us draw all the planes that contain faces of the given polyhedron.
All the parts into which they divide the space are convex ones. Therefore, they
determine the desired partition.

15.25. a) Inside the polyhedron take an arbitrary point P and cut all its faces
into triangles. The triangle pyramids with vertex P whose bases are these triangles
give the desired partition.

b) Let us prove the statement by induction on the number of vertices n. For
n = 4 it is obvious. Let us suppose that it is true for any convex polyhedron with
n vertices and prove that then it holds for a polyhedron with n + 1 vertices.

Let us select one of the vertices of this polyhedron and cut off it a convex hull
of the other n vertices, i.e., the least convex polyhedron that contains them. By
inductive hypothesis this convex hull — the convex polyhedron with n vertices —
can be divided in the required way.

The remaining part is a polyhedron (perhaps, a nonconvex one) with one fixed
point A and the other vertices connected with A by edges. Let us cut its faces
into triangles that do not contain vertex A. The triangular pyramids with vertex
A whose bases are these triangles give the desired partition.

15.26. The planes of faces of both polyhedrons intersect only along lines that
contain their edges. Therefore, each of the parts into which the space is divided
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has common points with the polyhedron. Moreover, to each vertex, each edge and
each face we can assign exactly one part adjacent to it and this will exhaust all
the parts except the polyhedron itself. Therefore, the required number is equal to
1+V +F +E. For the cube it is equal to 1+8+6+12 = 27 and for the tetrahedron
to 1 + 4 + 4 + 6 = 15.

15.27. Denote the number in question by Sn. It is clear that S1 = 2. Now, let
us express Sn+1 via Sn. To this end let us consider a set of n + 1 circles on the
sphere; select one circle from them . Let the remaining circles divide the sphere
into sn parts (sn ≤ Sn). Let the number of parts into which they divide the fixed
circle be equal to k.

Since k is equal to the number of the intersection points of the fixed circle with the
remaining n circles and any two circles have no more than two points of intersection
then k ≤ 2n. Each of the parts into which the fixed circle is divided divides in
halves not more than one of the parts of the sphere obtained earlier. Therefore,
the considered n + 1 circles divide the sphere into not more than sn + k ≤ Sn + 2n
parts and the equality is attained if any two circles have two common points and
no three circles pass through one point. Therefore, Sn+1 = Sn + 2n; hence,

Sn = Sn−1 + 2(n− 1) = Sn−2 + 2(n− 2) + 2(n− 1) = . . .
· · · = S1 + 2 + 4 + · · ·+ 2(n− 1) = 2 + n(n− 1) = n2 − n + 2.

15.28. First, let us prove that n lines no two of which are parallel and no three
pass through one point divide the plane into n2+n+2

2 parts. Proof will be carried
out by induction on n.

For n = 0 the statement is obvious. Suppose it is proved for n lines and prove it
for n+1 lines. Select one line among them. The remaining lines divide it into n+1
parts. Each of the lines divides some of the parts into which the plane is divided
by n lines into two parts. Therefore, when we draw one line the number of parts
increases by n + 1. It remains to notice that

(n + 1)2 + (n + 1) + 2
2

=
n2 + n + 2

2
+ n + 1.

For planes the proof is carried out almost in the same way as for lines. We only
have to make use of the fact that n planes intersect a fixed plane along n lines, i.e.,
they are divided into n2+n+1

2 parts.
For n = 0 the statement is obvious; the identity

(n + 1)3 + 5(n + 1) + 6
6

=
n3 + 5n + 6

6
+

n2 + n + 2
2

is subject to a straightforward verification.
15.29. Consider all the intersection points of the given planes. Let us prove that

among the given planes there are not more than three planes that do not separate
these points. Indeed suppose that there are 4 such planes. No plane can intersect
all the edges of tetrahedron ABCD determined by these planes; therefore, the fifth
of the given planes (it exists since n ≥ 5) intersects, for instance, not edge AB itself
but its intersection at point F . Let for definiteness sake point B lie between A and
F . Then plane BDC separates points A and F ; this is impossible.

Therefore, there are n − 3 planes on either side of which the points under con-
sideration are found. Now, notice that if among all the considered points that lie
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on one side of one of the given planes we take the nearest one, then the three
planes that pass through this point determine together with our plane one of the
tetrahedrons to be found.

Indeed, if this tetrahedron were intersected by a plane, then there would be an
intersection point situated closer to our plane. Hence, there are n−3 planes to each
of which at least 2 tetrahedrons are adjacent and to the 3 of the remaining planes
at least 1 tetrahedron is adjacent. Since every tetrahedron is adjacent to exactly
four planes, the total number of the tetrahedrons is not less than 1

4 (2(n− 3)+3) =
1
4 (2n− 3).

15.30. No, they cannot. Let us divide the plane into triangles equal to the face
of the tetrahedron and number them as shown on Fig. 111. Let us cut off a triangle
consisting of 4 such triangles and construct a tetrahedron from it.

Figure 111 (Sol. 15.30)

As is easy to verify that if this tetrahedron is rotated about an edge and then
unfolded onto the plane again being cut along the lateral edges, then the number of
the triangles of the unfolding coincides with the number of triangles on the plane.
Therefore, after any number of rotations of the tetrahedron the numbers of triangles
of its unfolding coincide with the number of the tetrahedrons on the plane.

15.31. From the given parallelepiped cut a slice of two cubes thick and glue the
remaining parts. Let us prove that the colouring of the new parallelepiped possesses
the previous property, i.e., the neighbouring cubes are painted differently. We only
have to verify this for cubes adjacent to the planes of i− th cut.

Let us consider four cubes with a common edge adjacent to the plane of the cut
and situated on the same side with respect to it. Let them be painted in colours
1–4; let us move in the initial parallelepiped from these cubes to the other plane of
the cut. The cubes adjacent to them from the first cut off slice should be painted
differently, i.e., colours 5–8.

Further, the small cubes adjacent to this new foursome of cubes are painted not
in colours 5-8, i.e., they are painted colours 1–4 and to them in their turn, the
cubes painted not colours 1–5, i.e., colours 5–8 are adjacent. Thus, in the new
parallelepiped to the considered foursome of small cubes the cubes of other colours
are adjacent. Considering all 4 such foursomes for the little cube adjacent to the
cut we get the desired statement.
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From any rectangular parallelepiped of size 2l × 2m× 2n we can obtain a cube
of size 2× 2× 2 with the help of the above-described operation and the little cubes
with its corners will be the same as initially. Since any two small cubes of the cube
of size 2×2×2 have at least one common point, all of them are painted differently.

15.32. Let O be the center of the lower base of the cylinder; AB the diameter
along which the plane intersects the base; α the angle between the base and the
intersecting plane; r the radius of the cylinder. Let us consider an arbitrary gener-
ator XY of the cylinder, which has a common point Z with the intersecting plane
(point X lies on the lower base). If ∠AOX = ϕ, then the distance from point X
to line AB is equal to r sin ϕ. Therefore, XZ = r sin ϕ tan α. It is also clear that
r tan α = h, where h is the height of the cylinder.

Figure 112 (Sol. 15.32)

Let us unfold the surface of the cylinder to the plane tangent to it at point A.
On this plane, introduce a coordinate system selecting for the origin point A and
directing Oy-axis upwards parallel to the cylinder’s axis. The image of X on the
unfolding is (rϕ, 0) and the image of Z is (rϕ, h sin ϕ). Therefore, the unfolding
of the surface of the section is bounded by Ox-axis and the graph of the function
y = h sin(x

r ) (Fig. 112). Its area is equal to
∫ πr

0

h sin(
x

r
)dx = (−hr cos(

x

r
))|πr

0 = 2hr.

It remains to notice that the area of the axial section of the cylinder is also equal
to 2hr.

15.33. First, let us prove that through any two points that lie inside a poly-
hedron a plane can be drawn that splits the polyhedron into two parts of equal
volume.

Indeed, if a plane divides the polyhedron in two parts the ratio of whose volumes
is equal to x, then as we rotate this plane through an angle of 180◦ about the given
line the ratio of volumes changes continuously from x to 1

x . Therefore, at certain
moment it becomes equal to 1.

Let us prove the required statement by induction on n. For n = 1, draw through
two of the three given points a plane that divides the polyhedron into parts of equal
volumes. The part to whose interior the third of the given points does not belong
is the desired polyhedron.

The inductive step is proved in the same way. Through two of the 3(2n − 1)
given points draw a plane that divides the polyhedron into parts of equal volumes.
Inside one of such parts there lies not more than 3(2n−1)−2

2 = 3 · 2n−1 − 2.5 points.
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Since the number of points is an integer, it does not exceed 3(2n−1− 1). It remains
to apply the inductive hypothesis to the obtained polyhedron.

15.34. Let us consider a parallelepiped for which the given points are vertices
and mark its edges that connect given points. Let n be the greatest number of
marked edges of this parallelepiped that go out of one vertex; the number n can
vary from 0 to 3. An easy case by case checking shows that only variants depicted
on Fig. 113 are possible.

Let us calculate the number of parallelepipeds for each of these variants. Any
of the four points can be the first, and any of the three remaining ones can be the
second one, etc., i.e., we can enumerate 4 points in 24 distinct ways.

Figure 113 (Sol. 15.34)

After the given points are enumerated, then in each of the cases the parallelepiped
is uniquely recovered and, therefore, we have to find out which numerations lead
to the same parallelepiped.

a) In this case the parallelepiped does not depend on the numeration.
b) Numerations 1, 2, 3, 4 and 4, 3, 2, 1 lead to the same parallelepiped, i.e.,

there are 12 distinct parallelepipeds altogether.
c) Numerations 1, 2, 3, 4 and 1, 4, 3, 2 lead to the same parallelepiped, i.e.,

there are 12 distinct parallelepipeds altogether.
d) The parallelepiped only depends on the choice of the first point, i.e., there

are 4 distinct parallelepipeds altogether.
As a result we deduce that there are 1+12+12+4 = 29 distinct parallelepipeds

altogether.



228 CHAPTER 15. MISCELLANEOUS PROBLEMS

CHAPTER 16. INVERSION AND

STEREOGRAPHIC PROJECTION

Let sphere S with center O and radius R in space be given. The inversion with
respect to S is the transformation that sends an arbitrary point A distinct from
O to point A∗ that lies on ray OA at the distance OA∗ = R2

OA from point O. The
inversion with respect to S will be also called the inversion with center O and of
degree R2.

Throughout this chapter the image of point A under an inversion with respect
to a sphere is denoted by A∗.

§1. Properties of an inversion

16.1. a) Prove that an inversion with center O sends a plane that passes through
O into itself.

b) Prove that an inversion with center O sends a plane that does not contain O
into a sphere that passes through O.

c) Prove that an inversion with center O sends a sphere that passes through O
into a plane that does not contain point O.

16.2. Prove that an inversion with center O sends a sphere that does not contain
point O into a sphere.

16.3. Prove that an inversion sends any line and any circle into either a line or
a circle.

The angle between two intersecting spheres (or a sphere and a plane) is the angle
between the tangent planes to these spheres (or between the tangent plane and the
given plane) drawn through any of the intersection points.

The angle between two intersecting circles in space (or a circle and a line) is the
angle between the tangent lines to the circles (or the tangent line and the given
line) drawn through any of the intersection points.

16.4. a) Prove that an inversion preserves the angle between intersecting spheres
(planes).

b) Prove that an inversion preserves the angle between intersecting circles (lines).
16.5. Let O be the center of inversion, R2 its degree. Prove that then A∗B∗ =

AB·R2

OA·OB .
16.6. a) Given a sphere and point O outside it, prove that there exists an

inversion with center O that sends the given sphere into itself.
b) Given a sphere and point O inside it, prove that there exists an inversion with

center O that sends the given sphere into the sphere symmetric to it with respect
to point O.

16.7. Let an inversion with center O send sphere S to sphere S∗. Prove that O
is the center of homothety that sends S to S∗.

§2. Let us perform an inversion

16.8. Prove that the angle between circumscribed circles of two faces of a
tetrahedron is equal to the angle between the circumscribed circles of two of its
other faces.
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16.9. Given a sphere, a circle S on it and a point P outside the sphere. Through
point P and every point on the circle S a line is drawn. Prove that the other
intersection points of these lines with the sphere lie on a circle.

16.10. Let C be the center of the circle along which the cone with vertex X is
tangent to the given sphere. Over what locus points C run when X runs over plane
Π that has no common points with the sphere?

16.11. Prove that for an arbitrary tetrahedron there exists a triangle the lengths
of whose sides are equal to the products of lengths of the opposite edges of the
tetrahedron.

Prove also that the area of this triangle is equal to 6V R, where V is the volume
of the tetrahedron and R the radius of its circumscribed sphere. (Crelle’s formula.)

16.12. Given a convex polyhedron with six faces all whose faces are quadrilat-
erals. It is known that 7 of its 8 vertices belong to a sphere. Prove that its 8-th
vertex also lies on the sphere.

§3. Tuples of tangent spheres

16.13. Four spheres are tangent to each other pairwise at 6 distinct points.
Prove that these 6 points lie on one sphere.

16.14. Given four spheres S1, S2, S3 and S4 such that spheres S1 and S2 are
tangent to each other at point A1; S2 and S3 at point A2; S3 and S4 at point A3;
S4 and S1 at point A4. Prove that points A1, A2, A3 and A4 lie on one circle (or
on one line).

16.15. Given n spheres each of which is tangent to all the other ones so that no
three of the spheres are tangent at one point, prove that n ≤ 5.

16.16. Given three pairwise tangent spheres Σ1, Σ2, Σ3 and a tuple of spheres
S1, S2, . . . , Sn such that each sphere Si is tangent to spheres Σ1, Σ2, Σ3 and also
to Si−1 and Si+1 (here we mean that S0 = Sn and Sn+1 = S1). Prove that if all
the tangent points of the spheres are distinct and n > 2, then n = 6.

16.17. Four spheres are pairwise tangent at distinct points and their centers lie
in one plane Π. Sphere S is tangent to all these spheres. Prove that the ratio of
the radius of S to the distance from its center to plane Π is equal to 1 :

√
3.

16.18. Three pairwise tangent balls are tangent to the plane at three points
that lie on a circle of radius R. Prove that there exist two balls tangent to the
three given balls and the plane such that if r and ρ (ρ > r) are the radii of these
balls, then 1

r − 1
ρ = 2

√
3

R .

§4. The stereographic projection

Let plane Π be tangent to sphere S at point A and AB the diameter of the
sphere. The stereographic projection is the map of sphere S punctured at point B
to plane Π under which to point X on the sphere we assign point Y at which ray
BX intersects plane Π.

Remark. Sometimes another definition of the stereographic projection is given:
instead of plane Π, plane Π′ that passes through the center of S parallel to Π
is taken. Clearly, if Y ′ is the intersection point of ray BX with plane Π′, then
2{OY ′} = {AY } so the difference between these two definitions is enessential.

16.19. a) Prove that the stereographic projection coincides with the restriction
to the sphere of an inversion in space.
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b) Prove that the stereographic projection sends a circle on the sphere that
passes through point B into a line and a circle that does not pass through B into
a circle.

c) Prove that the stereographic projection preserves the angles between circles.
16.20. Circle S and point B in space are given. Let A be the projection of point

B to a plane that contains S. For every point D on S consider point M — the
projection of A to line DB. Prove that all points M lie on one circle.

16.21. Given pyramid SABCD such that its base is a convex quadrilateral
ABCD with perpendicular diagonals and the plane of the base is perpendicular to
line SO, where O is the intersection point of diagonals, prove that the bases of the
perpendiculars dropped from O to the lateral faces of the pyramid lie on one circle.

16.22. Sphere S with diameter AB is tangent to plane Π at point A. Prove
that the stereographic projection sends the symmetry through the plane parallel to
Π and passing through the center of S into the inversion with center A and degree
AB2. More exactly, if points X1 and X2 are symmetric through the indicated
plane and Y1 and Y2 are the images of points X1 and X2 under the stereographic
projection, then Y1 is the image of Y2 under the indicated inversion.

Solutions

16.1. Let R2 be the degree of the considered inversion.
a) Consider a ray with the beginning point at O and introduce a coordinate

system on the ray. Then the inversion sends the point with coordinate x to the point
with coordinate R2

x . Therefore, the inversion preserves a ray with the beginning
point at O. It follows that the inversion maps the plane that passes through point
O into itself.

b) Let A be the base of the perpendicular dropped from point O to the given
plane and X any other point on this plane. It suffices to prove that ∠OX∗A∗ = 900

(indeed, this means that the image of any point of the considered plane lies on the
sphere with diameter OA∗). Clearly,

OA∗ : OX∗ =
(

R2

OA

)
:
(

R2

OX

)
= OX : OA,

i.e., 4OX∗A∗ ∼ 4OAX. Therefore, ∠OX∗A∗ = ∠OAX = 900. To complete the
proof we have to notice that any point Y of the sphere with diameter OA∗ distinct
from point O is the image of a point of the given plane — the intersection point of
ray OY with the given plane.

c) We can carry out the same arguments as in the proof of the preceding heading
but even more obviously can use it directly because (X∗)∗ = X.

16.2. Given sphere S. Let A and B be points at which the line that passes
through point O and the center of S intersects S; let X be an arbitrary point of
S. It suffices to prove that ∠A∗X∗B∗ = 90◦. From the equalities OA · OA∗ =
OX · OX∗ and OB · OB∗ = OX · OX∗ it follows that 4OAX ∼ 4OX∗A∗ and
4OBX ∼ 4OX∗B∗ which, in turn, implies the corresponding relations between
oriented angles: ∠(A∗X∗, OA∗) = ∠(OX,XA) and ∠(OB∗, X∗B∗) = ∠(XB,OX).
Therefore,

∠(A∗X∗, X∗B∗) = ∠(A∗X∗, OA∗) + ∠(OB∗, X∗B∗) =

∠(OX, XA) + ∠(XB, OX) = ∠XB, XA) = 90◦.
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16.3. It is easy to verify that any line can be represented as the intersection of
two planes and any circle as the intersection of a sphere and a plane. In Problems
16.1 and 16.2 we have shown that every inversion sends any plane and any sphere
into either a plane or a sphere. Therefore, every inversion sends any line and any
circle into a figure which is the intersection of either two planes, or a sphere and a
plane, or two spheres. It remains to notice that the intersection of a sphere and a
plane (as well as the intersection of two spheres) is a circle.

16.4. a) First, let us prove that every inversion sends tangent spheres to either
tangent spheres or to a sphere and a plane tangent to it, or to a pair of parallel
planes. This easily follows from the fact that tangent spheres are spheres with only
one common point and the fact that under an inversion a sphere turns into a sphere
or a plane. Therefore, the angle between the images of spheres is equal to the angle
between the images of the tangent planes drawn through the intersection point.

Therefore, it remains to carry out the proof for two intersecting planes Π1 and
Π2. Under an inversion with center O plane Πi turns into a sphere that passes
through point O and the tangent plane to it at this point is parallel to plane Πi.
This implies that the angle between the images of planes Π1 and Π2 is equal to the
angle between planes Π1 and Π2.

b) First, we have to formulate the definition of the tangency of circles in the form
invariant under an inversion. This is not difficult to do: we say that two circles in
space are tangent to each other if and only if they belong to one sphere (or plane)
and have only one common point. Now it is easy to prove that tangent circles pass
under an inversion to tangent circles (a circle and a line) or a pair of parallel lines.
The rest of the proof is carried out precisely as in heading a).

16.5. Clearly, OA ·OA∗ = R2 = OB ·OB∗. Therefore, OA : OB∗ = OB : OA∗,
i.e., 4OAB ∼ 4OB∗A∗. Hence,

A∗B∗

AB
=

OB∗

OA
=

OB∗

OA
· OB

OB
=

R2

OA ·OB
.

16.6. Let X and Y be the intersection points of the given sphere with a line that
passes through point O. Let us consider the inversion with center O and coefficient
R2. It is easy to verify that in both headings of the problem we actually have to
select the coefficient R2 so that for any line that passes through O the equality
OX · OY = R2 would hold. It remains to notice that the quantity OX · OY does
not depend on the choice of the line.

16.7. Let A1 be a point on sphere S and A2 be another intersection point of
line OA1 with sphere S (if OA1 is tangent to S, then A2 = A1). It is easy to verify
that the equality d = OA1 · OA2 is the same for all the lines that intersect sphere
S. If R2 is the degree of the inversion, then OA∗1 = R2

OA1
= R2

d OA2. Therefore, if
point O lies inside sphere S, then A∗1 is the image of point A2 under the homothety
with center O and coefficient R2

d and if point O lies outside S, then A∗1 is the image
of A2 under the homothety with center O and coefficient R2

d .
16.8. Let us apply an inversion with center at vertex D to tetrahedron ABCD.

The circumscribed circles of faces DAB, DAC and DBC pass to lines A∗B∗, A∗C∗

and B∗C∗ and the circumscribed circle of face ABC to the circumscribed circle S
of triangle A∗B∗C∗. Since any inversion preserves the angles between circles (or
lines), cf. Problem 16.4 b), we have to prove that the angle between line A∗B∗

and circle S is equal to the angle between lines A∗C∗ and B∗C∗ (Fig. 114). This
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Figure 114 (Sol. 16.8)

follows directly from the fact that the angle between the tangent to the circle at
point A∗ and chord A∗B∗ is equal to the inscribed angle A∗C∗B∗.

16.9. Let X and Y be the intersection points of the sphere with the line that
passes through point P . It is not difficult to see that the quantity PX · PY does
not depend on the choice of the line; let us denote it by R2.

Let us consider the inversion with center P and degree R2. Then X∗ = Y .
Therefore, the set of the second intersection points with the sphere of the lines that
connect P with the points of the circle S is the image of S under this inversion. It
remains to notice that the image of a circle under an inversion is a circle.

16.10. Let O be the center of the given sphere, XA a tangent to the sphere.
Since AC is a height of right triangle OAX, then 4ACO ∼ 4XAO. Hence,
OA : CO = XO : AO, i.e., CO · XO = AO2. Therefore, point C is the image of
point X under the inversion with center O and degree AO2 = R2, where R is the
radius of the given sphere. The image of plane Π under this inversion is the sphere
of diameter R2

OP , where P is the base of the perpendicular dropped from point O to
plane Π. This sphere passes through point O and its center lies on segment OP .

16.11. Let tetrahedron ABCD be given. Let us consider the inversion with
center D and degree r2. Then

A∗B∗ =
ABr2

DA ·DB
, B∗C∗ =

BCr2

BD ·DC
and A∗C∗ =

ACr2

DA ·DC
.

Therefore, if we take r2 = DA ·DB ·DC, then A∗B∗C∗ is the desired triangle.
To compute the area of triangle A∗B∗C∗, let us find the volume of tetrahedron

A∗B∗C∗D and its height drawn from vertex D. The circumscribed sphere of tetra-
hedron ABCD turns under the inversion to plane A∗B∗C∗. Therefore, the distance
from this plane to point D is equal to r2

2R .
Further, the ratio of volumes of tetrahedrons ABCD and A∗B∗C∗D is equal to

the product of ratios of lengths of edges that go out of point D. Therefore,

VA∗B∗C∗D = V
DA∗

DA

DB∗

DB

DC∗

DC
= V

( r

DA

)2 ( r

DB

)2 ( r

DC

)2

= V r2.

Let S be the area of triangle A∗B∗C∗. Making use of the formula VA∗B∗C∗D = 1
3hdS

we get V r2 = 1
3

r2

2RS, i.e., S = 6V R.
16.12. Let ABCDA1B1C1D1 be the given polyhedron where only about vertex

C1 we do not know if it lies on the given sphere (Fig. 115 a)). Let us consider an
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Figure 115 (Sol. 16.12)

inversion with center A. This inversion sends the given sphere into a plane and the
circumscribed circles of faces ABCD, ABB1A1 and AA1D1D into lines (Fig. 115
b)).

Point C1 is the intersection point of planes A1B1D1, CD1D and BB1C, there-
fore, its image C∗1 is the intersection point of the images of these planes, i.e., the
circumscribed spheres of tetrahedrons AA∗1B

∗
1D∗

1 , AC∗D∗
1D∗ and AB∗B∗

1C∗ (we
have in mind the point distinct from A). Therefore, in order to prove that point C1

belongs to this sphere it suffices to prove that the circumscribed circles of triangles
A∗1B

∗
1D∗

1 , C∗D∗
1D∗ and B∗B∗

1C∗ have a common point (see Problem 28.6 a)).
16.13. It suffices to verify that an inversion with the center at the tangent point

of two spheres sends the other 5 tangent points into points that lie in one plane.
This inversion sends two spheres into a pair of parallel planes and two other spheres
into a pair of spheres tangent to each other. The tangent points of these two spheres
with planes are vertices of a square and the tangent point of the spheres themselves
is the intersection point of the diagonals of the square.

16.14. Let us consider an inversion with center A1. Spheres S1 and S2 turn
into parallel planes S∗1 and S∗2 . We have to prove that points A∗2, A∗3 and A∗4 lie on
one line (A∗2 is the tangent point of plane S∗2 and sphere S∗3 , A∗3 the tangent point
of spheres S∗3 and S∗4 , A∗4 the tangent point of plane S∗1 and sphere S∗4 ).

Figure 116 (Sol. 16.14)

Let us consider the section with the plane that contains parallel segments A∗2O3

and A∗4O4, where O3 and O4 are the centers of spheres S∗3 and S∗4 (Fig. 116). Point
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A∗3 lies on segment O3O4, therefore, it lies in the plane of the section. The angles
at vertices O3 and O4 of isosceles triangles A∗2O3A

∗
3 and A∗3O4A

∗
4 are equal since

A∗2O3 ‖ A∗4O4. Therefore, ∠O4A
∗
3A

∗
4 = ∠O3A

∗
3A

∗
2; hence, points A∗2, A∗3 and A∗4 lie

on one line.
16.15. Consider an inversion with the center at one of the tangent points of

spheres. These spheres turn into a pair of parallel planes and the remaining n− 2
spheres into spheres tangent to both these planes. Clearly, the diameter of any
sphere tangent to two parallel planes is equal to the distance between the planes.

Now, consider the section with the plane equidistant from the two of our parallel
planes. In the section we get a system of n − 2 pairwise tangent equal circles. It
is impossible to place more than 3 equal circles in plane so that they would be
pairwise tangent. Therefore, n− 2 ≤ 3, i.e., n ≤ 5.

16.16. Let us consider an inversion with the center at the tangent point of
spheres Σ1 and Σ2. The inversion sends them into a pair of parallel planes and
the images of the other spheres are tangent to these planes and, therefore, their
radii are equal. Thus, in the section with the plane equidistant from these parallel
planes we get what is depicted on Fig. 117.

Figure 117 (Sol. 16.16)

16.17. Let us consider an inversion with center at the tangent point of certain
of two spheres. This inversion sends plane Π into itself because the tangent point
of two spheres lies on the line that connects their centers; the spheres tangent at
the center of the inversion turn into a pair of parallel planes perpendicular to plane
Π, and the remaining two spheres into spheres whose centers lie in plane Π since
they were symmetric with respect to it and so they will remain. The images of
these spheres and the images of sphere S are tangent to a pair of parallel planes
and, therefore, their radii are equal.

For the images under the inversion let us consider their sections with the plane
equidistant from the pair of our parallel planes. Let A and B be points that lie in
plane Π — the centers of the images of spheres, let C be the center of the third
sphere and CD the height of isosceles triangle ABC. If R is the radius of sphere
S∗, then CD =

√
3

2 AC =
√

3R. Therefore, for sphere S∗ the ratio of the radius to
the distance from the center to plane Π is equal to 1 :

√
3. It remains to observe

that for an inversion with the center that belongs to plane Π the ratio of the radius
of the sphere to the distance from its center to plane Π is the same for spheres S
and S∗, cf. Problem 16.7.
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16.18. Let us consider the inversion of degree (2R)2 with center O at one of the
tangent points of the spheres with the plane; this inversion sends the circle that
passes through the tangent points of the spheres with the plane in line AB whose
distance from point O is equal to 2R (here A and B are the images of the tangent
points).

Figure 118 (Sol. 16.18)

The existence of two spheres tangent to two parallel planes (the initial plane and
the image of one of the spheres) and the images of two other spheres is obvious.
Let P and Q be the centers of these spheres, P ′ and Q′ be the projections of points
P and O to plane OAB. Then P ′AB and Q′AB are equilateral triangles with side
2a, where a is the radius of spheres, i.e., a half distance between the planes (Fig.
118). Therefore,

r =
a · 4R2

PO2 − a2
, ρ =

a · 4R2

QO2 − a2

(Problem 16.5), hence,

1
r
− 1

ρ
=

PO2 −QO2

4aR2
=

P ′O2 −Q′O2

4aR2
=

(P ′O′)2 − (Q′O′)2

4aR2
=

=
(2R +

√
3a)2 − (2R−√3a)2

4aR2
=

2
√

3
R

(here O′ is the projection of O to line P ′O′).
16.19. Let plane Π be tangent to sphere S with diameter AB at point A.

Further, let X be a point of S and Y the intersection point of ray BX with plane
Π. Then 4AXB ∼ 4Y AB and, therefore, AB : XB = Y B : AB, i.e., XB · Y B =
AB2. Hence, point Y is the image of X under the inversion with center B and
degree AB2.

Headings b) and c) are corollaries of the just proved statement and the corre-
sponding properties of inversion.

16.20. Since ∠AMB = 90◦, point M belongs to the sphere with diameter AB.
Therefore, point D is the image of point M under the stereographic projection of
the sphere with diameter AB to the plane that contains circle S. Therefore, all the
points M lie on one circle — the image of S under the inversion with center B and
degree AB2 (cf. Problem 16.19 a)).

16.21. Let us drop perpendicular OA′ from point O to face SAB. Let A1 be
the intersection point of lines AB and SA′. Since AB ⊥ OS and AB ⊥ OA′,
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plane SOA′ is perpendicular to line AB and, therefore, OA1 ⊥ AB, i.e., A1 is the
projection of point O to side AB. It is also clear that A1 is the image of point A′

under the stereographic projection of the sphere with diameter SO to the plane of
the base. Therefore, we have to prove that the projections of point O to sides of
quadrilateral ABCD lie on one circle (cf. Problem 2.31).

16.22. Since points X1 and X2 are symmetric through the plane perpendicular
to segment AB and passing through its center, ∠ABX1 = ∠BAX2. Therefore, the
right triangles ABY1 and AY2B are similar. Hence, AB : AY1 = AY2 : AB, i.e.,
AY1 ·AY2 = AB2.
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PROBLEMS FOR INDEPENDENT STUDY

1. The lateral faces of a regular n-gonal pyramid are lateral faces ofa regular
quadrilateral pyramid. The vertices of the bases of the quadrilateral pyramid dis-
tinct from the vertices of the n-gonal pyramid form a regular 2n-gon. For what n
this is possible? Find the dihedral angle at the base of the regular n-gonal pyramid.

2. Let K and M be the midpoints of edges AB and CD of tetrahedron ABCD.
On rays DK and AM , points L and P , respectively, are taken so that DL

DK =
AP
AM and segment LP intersects edge BC. In what ratio the intersection point of
segments LP and BC divides BC?

3. Is the sum of areas of two faces of a tetrahedron necessarily greater than the
area of a third face?

4. The axes of n cylinders of radius r each lie on one plane. The angles between
the neighbouring axes are equal to 2α1, 2α2, . . . , 2αn, respectively. Find the
volume of the common part of the given cylinders.

5. Is there a tetrahedron such that the areas of three of its faces are equal to 5,
6 and 7 and the radius of the inscribed ball is equal to 1?

6. Find the volume of the greatest regular octahedron inscribed in a cube with
edge a.

7. Given tetrahedron ABCD. On its edges AB and CD points K and M ,
respectively, are taken so that AK

KB = DM
MC 6= 1. Through points K and M a plane

that divides the tetrahedron into two polyhedrons of equal volumes is drawn. In
what ratio does this plane divide edge BC?

8. Prove that the intersection of three right circular cylinders of radius 1 whose

axes are pairwise perpendicular fits into a ball of radius
√

3
2 .

9. Prove that if the opposite sides of a spatial quadrilateral are equal, then its
opposite angles are also equal.

10. Let A′B′C ′ be an orthogonal projection of triangle ABC. Prove that it is
possible to cover A′B′C ′ with triangle ABC.

11. The opposite sides of a spatial hexagon are parallel. Prove that these sides
are pairwise equal.

12. What is the area of the smallest face of the tetrahedron whose edges are
equal to 6, 7, 8, 9, 10 and 11 and volume is equal to 48?

13. Given 30 nonzero vectors in space, prove that there are two vectors among
them the angle between which is smaller than 45◦.

14. Prove that there exists a projection of any polyhedron, which is a polygon
with the number of vertices not less than 4. Prove also that there exists a projection
of the polyhedron, which is a polygon with the number of vertices not more than
n− 1, where n is the number of vertices of the polyhedron.

15. Given finitely many points in space such that the volume of any tetrahedron
with the vertices in these points does not exceed 1, prove that all these points can
be placed inside a tetrahedron of volume 8.

16. Given a finite set of red and blue great circles on a sphere, prove that there
exists a point through which 2 or more circles of one colour and none of the circles
of the other colour pass.
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17. Prove that if in a convex polyhedron from each vertex an even number of
edges exit, then in any of its section with a plane that does not pass through any
of its vertices we get a polygon with an even number of sides.

18. Does an arbitrary polyhedron contain not less than three pairs of faces with
the same number of sides?

19. The base of a pyramid is a parallelogram. Prove that if the opposite plane
angles of the vertex of the pyramid are equal, then the opposite lateral edges are
also equal.

20. On the edges of a polyhedron signs “+” and “−” are placed. Prove that
there exists a vertex such that going around it we will encounter the change of sign
not oftener than 4 times.

21. Prove that any convex body of volume V can be placed in a rectangular
parallelepiped of volume 6V .

22. Given a unit cube ABCDA1B1C1D1; take points M and K on lines AC1

and BC, respectively, so that ∠AKM = 90◦. What is the least value the length of
AM can take?

23. A rhombus is given; its the acute angle is equal to α. How many distinct
parallelepipeds all whose faces are equal to this rhombus are there? Find the ratio
of volumes of the greatest of such parallelepipeds to the smallest one.

24. On the plane, there are given 6 segments equal to the edges of a tetrahedron
and it is indicated which edges are neighbouring ones. Construct segments equal
to the distance between the opposite edges of the tetrahedron, the radius of the
inscribed and the radius of the circumscribed spheres.

Prove that for any n there exists a sphere inside which there are exactly n points
with integer coordinates.

26. A polyhedron M ′ is the image of a convex polyhedron M under the homo-
thety with coefficient − 1

3 . Prove that there exists a parallel translation that sends
polyhedron M ′ inside M . Prove that if the homothety coefficient is h < − 1

3 , then
this statement becomes false.

27. Is it possible to form a cube with edge k from black and white unit cubes so
that any unit cube has exactly two of its neighbours of the same colour as itself?
(Two cubes are considered neighbouring if they have a common face.)

28. Let R be the radius of the sphere circumscribed about tetrahedron ABCD.
Prove that

CD2 + BC2 + BD2 < 4R2 + AB2 + AC2 + AD2.

29. Prove that the perimeter of any section of a tetrahedron does not exceed
the greatest of the perimeters of the tetrahedron’s faces.

30. On a sphere, n great circles are drawn. They divide the sphere into some
parts. Prove that these parts can be painted two colours so that any two neighbour-
ing parts are painted different colours. Moreover, for any odd n the diametrically
opposite parts can be painted distinct colours and for any even n they can be
painted one colour.

31. Does there exist a convex polyhedron with 1988 vertices such that from no
point in space outside the polyhedron it is possible to see all its vertices while it is
possible to see any of 1987 of its vertices. (We assume that the polyhedron is not
transparent.)
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32. Let r be the radius of the ball inscribed in tetrahedron ABCD. Prove that

r <
AB · CD

2(AB + CD)
.

33. Given a ball and two points A and B outside it. Consider possible tetra-
hedrons ABMK circumscribed about the given ball. Prove that the sum of the
angles of the spatial quadrilateral AMBK is a constant, i.e.,

∠AMB + ∠MBK + ∠BKA + ∠KAM.

34. Let positive integers V , E, F satisfy the following relations

V − E + F = 2, 4 ≤ V ≤ 2E

3
and 4 ≤ F ≤ 2E

3
.

Prove that there exists a convex polyhedron with V vertices, E edges and F faces.
(Euler’s formula.)

35. Prove that it is possible to cut a hole in a regular tetrahedron through which
one can move another copy of the undamaged tetrahedron.

36. A cone with vertex P is tangent to a sphere along circle S. The stereographic
projection from point A sends S to circle S′. Prove that line AP passes through
the center of S′.

37. Given three pairwise skew lines l1, l2 and l3 in space. Consider set M
consisting of lines each of which constitutes equal angles with lines l1, l2 and l3 and
is equidistant from these lines.

a) What greatest number of lines can be contained in M?
b) If m is the number of lines contained in M , what values can m take?


